HARVARD
Kenneth C. Griffin

GRADUATE SCHOOL
OF ARTS AND SCIENCES

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the
Department of Physics

have examined a dissertation entitled
Fractionalization and disorder in strongly correlated systems

presented by Henry J. Shackleton

candidate for the degree of Doctor of Philosophy and hereby
certify that it is worthy of acceptance.

Signature Z’Z/Z M

Typed name: Prof. Subir Sachdev

Signature W / L~ -

Typed name: Prof. Ph/ lip Kim

Signature ﬁW/ %Ll

%/
Typed name: Prof. DanieWJafferis

Date: May 2, 2024




Fractionalization and disorder in strongly correlated
systems

A DISSERTATION PRESENTED
BY
HENRY SHACKLETON
TO
THE DEPARTMENT OF PHYSICS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DoCTOR OF PHILOSOPHY
IN THE SUBJECT OF
PHYSICS

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
MAay 2024



© 2024 - HENRY SHACKLETON
ALL RIGHTS RESERVED.



Thesis advisor: Subir Sachdev Author: Henry Shackleton

Fractionalization and disorder in strongly correlated systems

ABSTRACT

Emergence in systems of many electrons can lead to macroscopic demonstrations of quan-
tum mechanics which are intrinsically many-body. A primary focus of this dissertation is
the phenomena of fractionalization, where the effective quasiparticles which emerge at long
distances exhibit fractional quantum numbers of the microscopic degrees of freedom. The
interplay between these emergent degrees of freedom and the microscopic symmetries can
lead to a number of exotic properties including competing orders and unconventional phase
transitions. I explore this phenomena in a number of platforms. This includes quantum
antiferromagnets which can give rise to quantum spin liquids, where we predict critical prop-
erties of phase transitions between spin liquids and conventionally-ordered phases - due to the
fractionalized excitations, such critical theories deviate from traditional Landau-Ginzburg
predictions. I also study the interplay between fractionalized spin and charge excitations, as
well as fractionalization in non-equilibrium contexts.

The second goal of this dissertation is to investigate the properties of disordered, strongly
interacting, zero dimensional systems which exemplify many notable properties of higher-
dimensional systems, such as doping-induced quantum criticality and non-Fermi liquid trans-
port. The effects of disorder play an essential role in these models, leading to phenomena
such as spin glass phases and conductance fluctuations which we investigate through both

numerical and analytical methods.
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And so it goes, on and on, amidst a great deal of
excitement.
And also of confusion.

In brief, business as usual.

Abraham Pais

Introduction

1.1 PHASES OF MATTER AND QUASIPARTICLES

A multitude of scientific breakthroughs in the early 20th century dramatically shifted our
understanding of our universe, with the advent of quantum mechanics playing a central role
in this paradigm shift. Quantum mechanical phenomena such as entanglement, superposition,
and uncertainty gave a picture of reality that was jarringly different from ordinary human
experience. Nevertheless, numerous experiments confirmed that quantum mechanics does
indeed give an accurate description of physics on atomic scales. While many physicists dove
deeper, probing smaller and smaller length scales to determine the fundamental building
blocks of nature, other researchers took the equally profound route of understanding the full
implications that a quantum mechanical theory, applied to complicated systems of atoms and
electrons, can have on our universe. Just as it took many centuries between the establishment
of classical Newtonian mechanics and the invention of the airplane, the consequences that the
quantum mechanical nature of reality can have on our real world is a far from trivial corollary
of the governing principles of quantum mechanics.

An essential conceptual ingredient in ascertaining the full consequences of quantum me-

chanics is the notion of emergence of new physics at different length scales in many-body
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systems. While the full implications of quantum mechanics are unknown, the behavior of
a single electron in isolation is in fact extremely well-understood and whose properties can
be relatively easily predicted from the quantum mechanical single-particle Dirac equation,
provided one does not probe sufficiently small length scales to see the subatomic nature of
the electron. In contrast, the behavior of a macroscopic number of atoms interacting in a
crystalline solid is not at all obvious, despite its long-distance properties being accurately
captured by the many-particle Schrodinger equation. The behavior of these systems can lead
to quantum phenomena which is intrinsically many-body and could not be predicted from the
behavior of a single atom. Even more striking, this often leads to macroscopically observable
consequences of the quantum nature of reality.

A direct attack of the many-body Schréodinger equation is infeasibly complex. Two in-
dispensable conceptual developments in understanding these many-body systems were the
notion of quasiparticles and phases of matter. While the microscopic degrees of freedom in
a material may be made up of electrons, Coulomb interactions between these particles and
periodic potentials imposed by the crystalline lattice leads to behavior at long distances that
is distinct from that of free electrons, but nevertheless often has features that can be cap-
tured in a theory of weakly-interacting emergent quasiparticles. In the simplest case, these
quasiparticles largely resemble the microscopic electrons, with the effect of interactions being
to “renormalize” the mass of these electron-like quasiparticles. This is an essential ingredient
in the Landau-Fermi liquid theory of metals [266]. However, the complexity of many-body
quantum mechanical systems affords many more exotic possibilities. A central theme of this
dissertation is the phenomena of fractionalization. Fractionalization arises when the effective
low-energy degrees of freedom of a many-body system have quantum numbers, such as charge
and spin, that are fractions of those of the microscopic degrees of freedom. This is indicative
of the many-body nature of the problem; it means that the emergent degrees of freedom can-
not be constructed in a simple picture of non-interacting microscopic particles, as this would
at most yield integer multiples of the primitive quantum numbers. Fractionalization will be
discussed in more detail in Section 1.2.

A complementary organizing principle in understanding the behavior of many-body sys-

tems, which also plays an essential role in this dissertation, is that of categorizing phenomena
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in terms of phases of matter and phase transitions between them. Many distinct physical
systems display qualitatively similar behavior at long distances. A useful way of organizing
this behavior is to refer to similar materials as belonging to the same phase of matter, which
captures the universal long-distance properties.

An early understanding of classifying phases of matter was put forward by Landau [265].
The governing equations of a system of electrons in a crystal obey some set of symmetries
G, often consisting of a combination of lattice symmetries, charge conservation, rotation of
the internal spin of the electron, and time reversal symmetry. However, the quantum state
that the system chooses may break these symmetries down to a subset H - a ferromagnet,
for example, breaks spin rotation and time reversal symmetry. This picture also has close
connections to quasiparticles - for systems with spontanously broken continuous symmetries,
quasiparticles known as Goldstone modes emerge [161, 336] which correspond to slow rotations
of this order parameter. More generally, defects of an order parameter in a symmetry-broken
phase give rise to (potentially gapped) quasiparticles.

This symmetry-based classification is ultimately inadequate for capturing all intuitively-
distinct phases of matter, at least in the simplest formulation. For example, a ferromagnet may
have either insulating or metallic properties which are seemingly not distinguished through
a symmetry-based criteria. The interpretation of superconductivity as spontaneous breaking
charge conservation poses issues when the electromagnetic gauge field is properly taken into
account and the symmetry at hand is demoted to a fictitious gauge symmetry. Finally, there
exist “topological” phases of matter known as quantum spin liquids which break no symmetries
of the underlying lattice but cannot be continuously deformed into a trivially disordered state.
Substantial progress has been made in attempting to unify these phases using a sufficiently
generalized notion of “symmetry,” [310] but this will not be the focus of this dissertation.

A more pervasive theme will be the focus on universal properties of transitions between
phases of matter. In a conventional symmetry-based description, phase transitions are de-
scribed by a Landau-Ginzburg theory, which is a generic field theory that captures long-
distance fluctuations of the order parameter of a phase. The only input into this theory is
the full symmetry of the system, the symmetry that is being broken, and the dimension of

the system. The remarkable renormalization-group theory of criticality justifies this picture
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and predicts universal properties of phase transitions which are only dependent on this input.
However, there exist many exotic phase transitions that fall outside the Landau-Ginzberg
paradigm, several of which are studied in this dissertation. For example, the presence of
gapless metallic degrees of freedom - either on one side of the transition or across the tran-
sition - is not captured in a Landau-Ginzburg description. An early theory of Hertz-Millis
criticality [188, 317] argued for a minimal description in terms of a symmetry order parameter
coupled to a Fermi surface. An example of a phase transition with gapless fermionic degrees
of freedom is studied in Chapter 7. Transitions into topologically-ordered states, which lack a
local order parameter, do not naturally admit a Landau-Ginzburg description. Phase transi-
tions of these types are studied in Chapter 2, where a Landau-like theory can be developed in
terms of fractionalized quasiparticles. Finally, there is the possibility of a continuous phase
transition between distinct symmetry-broken phases with residual subgroups H and H’, where
neither is a subgroup of the other. The final possibility, known as deconfined criticality, can
occur when the two phases of matter are “intertwined” in such a way that defects of one
phase carry quantum numbers of the other. Models of deconfined criticality are studied in
Chapters 3 and 6.

Several chapters of this dissertation focus on aspects of quantum systems which were his-
torically regarded as antithetical to realizing exotic quantum behavior, but have since been
understood to bring about intrinsically new physics. These are the phenomena of decoherence
and disorder, which are reviewed in Sections 1.3 and 1.4, respectively. Both of these aspects
are ubiquitous in realistic systems. Quantum materials can never be perfectly isolated from
their environments, and interactions between these systems can cause the material to lose
coherence. Similarly, materials rarely form perfect crystalline solids, and defects in these
materials lead to deviations from idealized clean models. The understanding of these effects
have revealed novel ways in which quantum mechanics can manifest itself on a macroscopic
scale.

The dramatic rise in computing power over the last several decades, as well as an improved
theoretical understanding of quantum many-body systems, has led to massive successes in
the field of computational many-body physics. Chapters and explicitly involve applications

of these methods, and essentially all chapters lean on developments in computational physics
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Magnetic order Valence bond solid order Quantum spin liquid

Figure 1.1: A quantum antiferromagnetic Heisenberg model can lead to a wealth of phases at
zero temperature. In this dissertation, we will primarily be focused on three types of phases.
In magnetically ordered states, each spin aligns in a definite direction in a manner which leads
to long-range order, although the strength of this order is generally reduced due to quantum
fluctuations. Valence bond solid order occurs when neighboring spins form a regular tiling of
spin singlet states, breaking lattice symmetries. Quantum spin liquids break no symmetries
of the lattice and possess fractionalized spin-1/2 spinon excitations.

in some way. In Section 1.5, we provide a brief overview of the various numerical tools of

relevance to this dissertation.

1.2 FRACTIONALIZATION AND QUANTUM SPIN LIQUIDS

Fractionalization arises when the effective low-energy degrees of freedom of a many-body sys-
tem have quantum numbers that are fractions of those of the microscopic degrees of freedom.
This is indicative of the many-body nature of the problem; it means that the emergent degrees
of freedom cannot be constructed in a simple picture of non-interacting microscopic particles,
as this would at most yield integer multiples of the primitive quantum numbers. The most
well-confirmed experimental demonstration of fractionalization is the fractional quantum Hall
effect [20, 160, 176, 522], where the physical electron fractionalizes into composite fermions
with fractional charge.

Quantum spin liquids (QSLs) provide an especially rich platform to study symmetry frac-
tionalization. QSLs arise in quantum magnets when a combination of geometric frustration
and quantum fluctuations preclude the existence of conventional order at zero temperature.
Note that beyond conventional magnetic order, such as ferromagnetism and antiferromag-

netism which have clear classical analogies, the quantum nature of the underlying spins al-
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lows for additional paramagnetic phases known as valence bond solid (VBS) phases, shown in
Fig. 1.1, where neighboring spins pair up in a regular fashion to form spin singlet pairs. These
phases break translational symmetry and have a local order parameter, neither of which is the
case for a QSL. A simple picture of a QSL was proposed by Anderson [17] as a “resonating
valence bond” (RVB) state, where the QSL is constructed by taking a macroscopic super-
position of different valence bond tilings of the lattice in a way which restores translational
symmetry. More modern understandings of QSLs are formulated in terms of parton construc-
tions, which is summarized in Section 1.2.1, or more abstractly in the language of topological
and conformal field theories.

A hallmark feature of QSLs is the existence of charge-neutral spin-1/2 spinon excitations.
This may superficially not appear to be a case of fractionalization, as the physical electron also
has spin-1/2; however, recall that the electron also has electric charge, and forming a charge-
neutral object requires an even number of electron-hole pairs and will therefore naturally have
an integer spin. Indeed, conventional spin wave excitations in magnetically ordered phase
have integer spin. A QSL can be thought of as a limiting case of spin-charge fractionalization,
where an electron fractionalizes into a spinless charge e holon and a charge-neutral spin-
1/2 spinon; the QSL arises when the holons are gapped and play no role in the low-energy
description. In Anderson’s RVB picture, these spinons can be obtained by breaking a valence
bond singlet; this creates an excitation with integer spin, but supported on two sites. Due
to the superposition of different VBS configurations, these sites can be moved arbitrarily far
away from each other without disrupting the overall RVB state, which constitutes a pair of
spin-1/2 spinon excitations. Spin liquids also possess exotic spin 0 excitations, although the
nature of these excitations is non-universal; for example, they may take the form of gapped
“vison” excitations or gapless “photon” excitations. The nature of these additional excitations
is related to the structure of a fluctuating gauge field that the spinons must be coupled to,
and is elaborated in more detail in Section 1.2.1.

A recurring theme in this dissertation is symmetry fractionalization beyond spin-charge
fractionalization. Frustrated spin systems generically possess a large number of symmetries
beyond just spin rotation symmetry; for example, lattice symmetries such as translation and

rotation, as well as time-reversal symmetry. The ways in which spinons as well as additional
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excitations like visons realize these symmetries has important implications for the stability of
spin liquid phases. Natural routes to proximate ordered phases may be obtained by condensing
bosonic excitations of the spin liquid with non-trivial quantum numbers of the microscopic
symmetries. For example, in Chapter 3, we demonstrate that one can obtain VBS order
by condensing a spin 0 vison with a non-trivial fractionalized representation of the lattice
symmetries. Understanding the multitude of ways in which the microscopic symmetries can
act on fractionalized excitations also allows one to construct effective Landau-Ginzburg actions
for such transitions, as is the focus of Chapter 2 and 6.

In the following section, we give a review of symmetry fractionalization through the lan-
guage of parton constructions. It is important to note that the types of symmetry fractional-
ization realized in parton constructions only constitute a subset of the possible fractionaliza-
tion patterns that can emerge in frustrated magnets. A full classification is easiest to see for
gapped quantum spin liquids with Zsy topological order. In this case, the low-energy theory
can be described in terms of three anyons, e, m, and ¢, along with their symmetry transfor-
mations. Because of the Zy gauge redundancy, the different symmetry representations are
given by the Zy central extension of the lattice symmetry group. A mean-field description
of partons focuses primarily on the symmetry fractionalization of one of these anyons corre-
sponding to the spinon, with different projective symmetry representations of the vison not
considered. Group cohomology methods [131] have been used to classify all possible projective
symmetry representations, and found a large number (2,098,176) of possible gapped Zy spin
liquids, significantly larger than the number of Zs spin liquids predicted by a fermionic parton
construction (272). Moving beyond a parton theory of symmetry fractionalization for gapless
spin liquids falls under a general theory of symmetry-enriched quantum criticality [491, 548],

which is an emerging field of research.

1.2.1 FRACTIONALIZATION IN PARTON CONSTRUCTIONS

Much of the early work in understanding fractionalization in the language of projective sym-
metry groups was put forth in [511]. In this approach, one analyzes Heisenberg models of the

form H = Zij JijS;i - S; by rewriting the spin operator in terms of Abrikosov fermions, which
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we refer to as spinons,

1
SizzifLaa@ﬁg. (1.1)

Note that an alternative approach is do perform a decomposition in terms of bosonic operators.
This rewriting introduces an SU(2) redundancy in our description; an equivalent way of stating
the problem is that our Hilbert space has been enlarged to include the unphysical states |0)

and fiTT fil |0). One must enforce the constraints

flfia =1, fiatigeas =0. (1.2)

These constraints can be made more transparent by introducing the doublet

Y= (1.3)

where the constraints take the form

il =0 (1.4)

with Pauli matrices 7!. With this, we see that a full theory necessitates the addition of SU(2)
gauge fields that couple to the current in Eq. 1.4, which converts our SU(2) redundancy into
an appropriately-unphysical SU(2) gauge ambiguity.

The quantum Heisenberg Hamiltonian is quartic in the fermionic spinon operators. By
performing a mean-field decoupling and treating the gauge fields as static, one can obtain
quadratic spinon Hamiltonians which provide a mean-field description of our spin liquid state

and schematically takes the general form

H=>JlUu;. (1.5)
]
Ui; is required by spin rotation invariance to take the form U;; = ip;;W;;, where p;; is a real
number and W;; is an element of SU(2).

An important observation is that the spinon mean-field Hamiltonian is not gauge-invariant.
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Under an SU(2) gauge transformation W;, we have the transformation

Wy — Wi
(1.6)

Uij — WU W)
This observation has two consequences. First, the mean-field Hamiltonian may not be invari-
ant under a generic global SU(2) rotation. If not, it may be invariant under a U(1) subgroup,
or at worst the Zs center W; = —1. Depending on these options, the relevant gauge fluctu-
ations are also broken down to U(1) or Zs. This qualitatively affects the nature of the spin
liquid phase; U(1) gauge fields support gapless photon excitations which may destabilize the
spin liquid at low energies, whereas Zs gauge fields only have gapped vison excitations.

A second consequence of this is that the hoppings U;; are permitted to break the lattice
symmetries of the Hamiltonian, provided that the symmetry-transformed version of Hamil-
tonian is gauge-equivalent to the original one. When this is the case, one says that the
spinons realize the lattice symmetries projectively. An example which appears frequently in
this dissertation is the m-flux spin liquid, where the hoppings take the form

Uiivg = —Uiyz; =1,

(1.7)

Uiitg = —Usga = i(=1)" .
These hoppings are invariant under global SU(2) gauge transformations. These hoppings
seemingly break translational symmetry in the z-direction; however, symmetry can be re-
stored by supplementing the symmetry with the gauge transformation W; = (—1)%. Similar
transformations can be constructed for other naively-broken lattice symmetries such as rota-
tion and reflection.

Classifying the distinct ways in which a mean-field fermionic spinon Hamiltonian can projec-
tively realize the symmetries of the square lattice was one of the contributions of [511]. From
this, numerous follow-up works analyzed the possible projective symmetry representations on
other lattice geometries, including triangular [502, 573] and kagome [295, 502].

The connection between projective symmetry representations and symmetry fractionaliza-

tion requires some elaboration. Fractionalization of the spin quantum number is immediately
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apparent in our parton construction, and while projective representations of lattice symmetries
clearly indicate that something atypical is going on, it is not clear in what sense these lattice
symmetries are “fractional.” To elaborate this, we focus on the projective representation of
translation symmetry, encoded in the identity T,7T,T, T v ' = _1. For a gapped Zy spin
liquid of half-integer spins, the vison excitations always have this projective symmetry, since
this symmetry transformation causes the vison to encircle an odd number of spinons. Spinons
may or may not realize these projective symmetries depending on the spin liquid. The 7-flux
spin liquid is an example of spin liquid with such a projective symmetry relation. With this

projective symmetry, all irreducible representations are, up to similarity transformation [132],
T, =" 71" T, =e"vr?, (1.8)

We refer to k., as “fractional momentum” as they are only defined modulo 7 rather than
27, since the sign of T, ,T, can be changed by a unitary transformation. This halving of
the momenta can be used as a dynamical signature of symmetry fractionalization and can be

probed through response functions [471].

1.2.2 WHERE ARE THE SPIN LIQUIDS?

On a theoretical level, there are many powerful tools for classifying and characterizing possi-
ble spin liquid phases. However, as is often the case for many of the exotic states of matter
proposed by theorists, a challenging but important step is to find realistic models that sup-
port these phases. For quantum spin liquids, the rough recipe for finding these phases is to
maximize the frustration in a quantum spin system, such that a simple magnetically-ordered
phase becomes energetically unfavorable and gives rise to more exotic paramagnetic phases.
Note that this procedure may still give rise to non-topologically-ordered paramagnetic phases
such as valence bond solids. Searching for candidate spin liquids can be carried out either
experimentally in real materials with support localized magnetic moments and strong frus-
tration, or numerically in simplified but realistic models of antiferromagnetism. To limit the
scope of this section to topics most directly connected to later chapters, we focus primarily

on the latter.
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Before reviewing the evidence for spin liquid phases in realistic spin models, we first ask the
question: how does one detect a spin liquid? This is a difficult question - especially in actual
experiments where one has limited access to observables - due to the lack of a local order pa-
rameter to identify the state. A common method is simply by process of elimination - measures
of magnetic order and lattice symmetry-breaking order are performed, and if such symmetries
appear unbroken, then victory is claimed. This is not as bad of an argument as it might seem.
This is because of the Lieb-Schultz-Mattis theorem [282] and its higher-dimensional general-
izations [178, 349], which place non-perturbative constraints on the ground state wavefunction
of Hamiltonians possessing spin rotation and lattice translation symmetry. Applied to our
spin systems, it prevents the existence of a trivial (non-topologically-ordered), gapped, and
symmetric ground state. As such, ruling out the existence of conventional symmetry-breaking
means that the state must be topologically-ordered or gapless. The latter option is satisfied
by spin liquid states with either gapless spinon or gauge excitations. A “boring” way out of
this theorem would be to have a sufficiently ordinary gapless state whose excitations are non-
fractionalized. However, to our knowledge, no such states have ever been proposed, although
the non-triviality in constructing such an example perhaps makes such states interesting in
their own right. Note that gaplessness by itself is not sufficient to be an allowed state - in more
precise language, there is a mixed t’Hooft anomaly that must be matched by the low-energy
effective theory in order to be a valid state. Putting aside this possibility, the lack of any
detectable symmetry breaking provides strong evidence for a spin liquid ground state with
fractionalized excitations. This comes with the caveat that candidate spin liquid phases often
only appear in narrow parameter windows in between ordered phases, so demonstrating the
existence of a stable symmetric phase rather than a direct transition between ordered phases
requires careful finite size analysis and is often not without controversy.

A less rigorous approach is to explicitly construct spin liquid variational wavefunctions,
optimize them for the spin system of interest, and compare the variational energies to more
unbiased methods such as DMRG. If the two are in good agreement, then this gives good
evidence for such a spin liquid phase, and moreover can give a great deal of insight into the
nature of the spin liquid phase. This approach has a number of drawbacks. There is the

obvious concern of how “good” of an energy must one get in order to be confident that the
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variational ansatz provides an accurate description of the ground state. In terms of symmetry
fractionalization, there exist a large number of spin liquid states, only a small fraction of which
can be easily accessed by conventional parton constructions. A priori, there is no reason to
expect this subset of fractionalization patterns to be the ones that emerge in physical spin
models.

Several proposals have been made for detecting the symmetry fractionalization of spin
liquid quasiparticles. These proposals have focused primarily on gapped Zs quantum spin
liquids, as the gapped quasiparticle excitations and well-defined topological contribution to
the ground state entanglement entropy allows for more controlled methods. An early proposal
was the use of minimally entangled states (MES) [223], which argued that DMRG algorithm
naturally picked out a preferred basis in the topologically degenerate ground state subspace,
which can then be used for controlled extraction of the topological entanglement entropy. This
idea was further developed by noting that fractionalization of lattice symmetries should be
reflected by the quantum numbers of the MES with varying boundary conditions [373, 554].
The accuracy of these symmetry fractionalization methods are somewhat ambiguous. For
example, these methods were applied to candidate spin liquids of triangular lattice Heisenberg
models to obtain seemingly convincing evidence of symmetry fractionalization. Nevertheless,
subsequent DMRG studies [193] gave strong evidence for a gapless Dirac spin liquid, consistent
with variational Monte Carlo studies. MES studies gave evidence for gapped Zo spin liquids
for both square and kagome antiferromagnets [223, 224], but both interpretations have fallen
out of favor and are believed to host gapless spinon excitations. A better understanding the
limits of these methods is an important research direction.

Extensive numerical simulations have been performed on a variety of magnetically frus-
trated systems. Below, we review some of the most recent numerical results on these lattices.
To fix convention, we will use the variable J, to refer to antiferromagnetic couplings between

n-th nearest neighbor sites.

1.2.3 SQUARE LATTICES

The square lattice Heisenberg model with nearest-neighbor antiferromagnetic interactions, is

an quantum antiferromagnet. This is not too surprising due to the lack of geometric frustration
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in the square lattice, although the quantum nature of the spins means that the actual form of
the ground state is modified substantially from a classical Néel state (as the latter is not an
eigenstate of the Hamiltonian), and the magnitude of the antiferromagnetic order parameter
is reduced by quantum fluctuations. By adding in a second-nearest-neighbor interaction .Jo,
frustration is maximized classically at Jo/.J; = 0.5, and the presence of a non-magnetic phase
in the quantum model has been well-established numerically. A more controversial question
is the nature of this non-magnetic region - is it VBS order, a spin liquid, or are there two
distinct VBS and spin liquid phases existing in this region? This is a challenging question
due to the small size of the non-magnetic region, which only exists around 0.5 < Jo/J; < 0.6.
Nevertheless, the existence of long-range VBS order has been established for at least part
of the non-magnetic region by careful finite-size analysis of VBS correlation functions. The
inclusion of a third-nearest-neighbor coupling J3 has been shown to enlarge the region of VBS
order [291], leading to an even more unambiguous demonstration of the VBS order.

Having clearly established the VBS order, the question is whether there is a direct transition
between the VBS and Néel order, or if a narrow spin liquid phase appears in between the two.
For methods such as DMRG, PEPS, and NQS, a direct finite size extrapolation of the Néel and
VBS order parameters often indicates a stable spin liquid phase. A more subtle approach is to
use level spectroscopy methods. Note that recent results using new DMRG techniques argue
that improved level spectroscopy on larger system sizes indicate a direct Néel /VBS transition
and no intermediate spin liquid phase [375], although this study did not investigate the Néel
and VBS order parameters directly. The most direct insight into the nature of the spin liquid
comes from variational Monte Carlo studies [140] that explicitly use a Gutzwiller-projected
fermionic spinon trial wavefunction with a particular projective symmetry representation clas-
sified as Z2Azz13 using Wen’s [511] projective symmetry notation. The gapless nature of this
spin liquid is consistent with other numerical studies [290, 342, 505], although the details
of the particular symmetry fractionalization have not been confirmed through independent
methods. Nevertheless, we will assume this particular spin liquid when we analyze the nature

of the phase transitions into proximate Néel and VBS phases in Chapter 2.
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1.2.4 TRIANGULAR LATTICES

The triangular lattice Heisenberg model with nearest-neighbor antiferromagnetic interaction,
while possessing more geometric frustration than a square lattice, is ultimately a magnetic
phase with coplanar magnetic order illustrated in Fig. [42, 69, 200]. However, the strength
of the order is extremely strongly suppressed by quantum fluctuations, and a very small
next-nearest neighbor antiferromagnetic interaction Jo is sufficient to destroy the magnetic
order [195, 207, 232, 345, 407, 517, 575]. The nature of this spin liquid has been debated
over the years; early DMRG studies detected signatures of fractionalization consistent with a
gapped Zg spin liquid [195, 575], contradicting VMC studies which indicated a gapless U(1)
Dirac spin liquid [207]. Subsequent DMRG studies [193] found evidence for a gapless spin
liquid, consistent with VMC results. Of note is a remarkable recent work [517] which carefully
studied the low-lying energy eigenstates of the triangular lattice Heisenberg model in the pu-
tative spin liquid region and found a striking correspondance between them and excitations of
a Dirac spin liquid, including spinon bilinear excitations as well as U(1) monopole excitations.

A second type of spin liquid on the triangular lattice has recently been proposed, which
comes from reducing the strength of the repulsive interactions of the underlying electronic
system that reduces to a Heisenberg model in the limit of strong interactions. In a parameter
region between an antiferromagnetic insulator and a metal, a new phase appears to emerge
which is both paramagnetic and has a charge gap [473]. DMRG studies have indicated that
the spin liquid is chiral, and an analysis of effective spin interactions generated by virtual
electron processes support this chiral spin liquid [93].

The existence of such a spin liquid phase near a metal-insulator transition motivates the
development of variational wavefunctions, analogous to Gutzwiller-projected parton construc-
tions, that can faithfully capture both the topological order of the spin liquid as well as the
gapped charge excitations. A naive approach of softening the Gutzwiller projection is inade-
quate; as the parton mean-field ansatz may only realize certain lattice symmetries projectively,
softening a Gutzwiller projection causes these projective symmetries to become broken. Some
work was made in this direction [485] by replacing the Gutzwiller projection with singular

Jastrow factors; however, this still leads to symmetry-broken phases. One of the goals of
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Chapter 6 is to develop variational wavefunctions suitable for parameter regimes such as

these.

1.2.5 KAGOME LATTICES

The kagome lattice Heisenberg antiferromagnet with nearest neighbor interactions is a strong
candidate for a QSL, as it exhibits large geometric frustration and the classical antiferromag-
net has extensive degneracy. Upon promotion to a quantum model, this system is believed
to support a quantum spin liquid without the need for additional longer-range Heisenberg
interactions. Early DMRG works suggested a gapped Zg spin liquid [108, 223, 540]; how-
ever, subsequent DMRG simulations found signatures of gapless Dirac cones [183], which is

consistent with variational parton studies [205, 206, 208, 209, 382].

1.3 DYNAMICS OF OPEN QUANTUM SYSTEMS

Theoretical models of quantum systems are generally taken to be closed - i.e, one defines
a Hamiltonian for a system of interest which then evolves through unitary time evolution.
However, quantum systems generically have some amount of coupling to their environment
- for example, a cold atom system coupled to a reservoir. While the entire quantum system
including the environment obeys the conventional unitary time evolution of quantum me-
chanics, one is often only interested in the physics of a subset of the total degrees of freedom.
An effective description of only these degrees of freedom often goes by the name of quantum
master equations. These describe the time evolution of the reduced density matrix p obtained
by tracing out the environmental degrees of freedom. As p contains both quantum and clas-
sical superpositions of different states, interactions between a system and its environment is
generically thought to lead to decoherence, where delicate quantum superpositions are ob-
fuscated by classical correlations. Nevertheless, engineering these open system dynamics has
turned out to be a prosperous field, with new applications such as the preparation of quantum
states [31, 109, 259, 267, 509] including topologically-protected edge modes [110]. Chapters
in this dissertation involve the study of such open systems, and we review some of the general

principles below.
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A generic operator p must satisfy several physical properties in order to be a legitimate

density matrix of a quantum system. These conditions are
« Hermiticity, pf = p
e Tripl=1
o Positivity, (¢|p|¢) for any state |¢)

The most generic time evolution operator of a density matrix Uy : p(0) — p(t) must take a
valid density matrix p(0) to another valid density matrix p(0). This implies that U; must
satisfy the mathematical properties of a completely positive trace-preserving (CPTP) map.
Generic CPTP maps are not required to be Markovian, i.e. they may not be expressible
in the form of a local-in-time differential equation. Non-Markovian dynamics are a subject
of intense study and can lead to many remarkable properties [105]. These include memory
effects, where information about a quantum system can leak out into the environment but
return back at a later time. However, the focus on decoherence in this dissertation will
generally involve Markovian dynamics, where the relevant timescales of the environmental
dynamics are sufficiently small relative to the timescales of our system, such that to a good
approximation one can regard the environment at time ¢ 4 dt¢ as having “forgotten” about the
state of the system at time ¢t. The most general Markovian generator of CPTP maps is given

by the Gorini-Kossakowski-Sudarshan-Lindblad equation [166, 288], or the Lindbladian,
W L)+ Y (Lo~ S{Ei L) (1.9)
dr A ’ i 7 7 i 2 s iy .

where L; are a set of “quantum jump operators” describing the dissipative part of the dynamics
and 7; = 0 govern the strength of the quantum jumps. The Lindbladian can be derived
starting from the full unitary time evolution of a system and its environment and making
approximations based on a hierarchy of relevant timescales in the system [71], but on very
general grounds describes Markovian dynamics of CPTP maps.

In recent decades, there has been emerging interest in studying many-body quantum sys-

tems in a Lindblad framework. Analyses of the Lindbladian superoperator has revealed rich
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symmetry-based classifications [237, 286, 405] and anomaly constraints on steady-state solu-
tions [241].

A physically insightful interpretation of the Lindblad equation can be obtained through
the quantum trajectory approach [116, 117]. The most agnostic statement way of framing
this method is the observation of the mathematical equivalence between the Lindbladian time
evolution defined in Eq. 1.9 on an initial state pg = [¢) (1| and stochastic time evolution

governed by the following rules:

o An initial pure state [¢) is evolved in time according to an effective non-Hermitian

Hamiltonian Heg = H — % > ’yiLZ-LLi.

e By choosing a uniformly-distributed random number 0 < r < 1, a quantum jump
occurs when |(¢(t)y(t)](t)Y(t))| = r. A jump operator L; is selected according to
the probability distribution p; ~ 7; (1(t)] L;[LZ- |t(t)) and the operation |¢) — L; |1)) is

performed. The state is renormalized after to have a magnitude of unity.

e Observables are calculated by averaging over all possible “quantum trajectories” ob-

tained in this manner.

Practically this approach can be beneficial from the point of view of numerically simulating
Lindbladian dynamics, as the full density matrix does not need to be manipulated. However,
an interesting observation is that if such an interpretation had physical meaning, and if by
performing many identical experiments one could “post-select” on a particular realization
where no quantum jumps occur, then one would effectively generate non-unitary dynamics
governed by the non-Hermitian Hamiltonian Hg. There is substantial motivation for this -
the study of non-Hermitian Hamiltonians has grown extensively over the past several decades,
and many exotic phenomena have been found such as exceptional points [56, 184, 233], non-
Hermitian topology [163, 240, 278, 284, 294, 444, 553, 569], and non-Hermitian skin effects [50,
129, 196, 239, 264, 274, 423, 530, 547]. Chapter studies the effects of exceptional points on
topologically-ordered phases of matter. However, beyond the obvious desire to realize these
properties in physical systems, even basic theoretical questions on how to interpret things like
complex energy spectra and non-orthogonal eigenstates requires a grounding in some physical

model, which a post-selection protocol such as this could provide.

17



Chapter 1. Introduction

Indeed, a physical interpretation of these quantum trajectories is possible. This interpreta-
tion requires knowledge of the full system, as generically the quantum jump operators L; are
not unique. An explicit derivation of the Lindblad equation starting from the full Hamiltonian
of the system and environment can be followed to identify the modes of the environment that
the quantum jump operators couple to, which can then be measured in an experiment [101].
This interpretation is especially clear in two-level systems coupled to a photonic cavity, where
quantum jumps correspond to spontaneous emission events which can be detected by measur-
ing the bath [101, 113, 117]. Note that sometimes measuring the environment is not necessary
to perform this post-selection process; if quantum jumps correspond to irreversible particle
loss, then one can post-select on the trajectory with no quantum jumps by simply measuring

the total number of particles in the system at the end of the experiment.

1.4 DISORDER IN QUANTUM SYSTEMS

Disorder is a ubiquitous property in physical materials. In low dimensions, the interplay
between disorder and quantum fluctuations can lead to new phenomena not present in clean
systems. Several chapters in this dissertation are devoted to the study of such disordered
systems. In this section, we review a few of the general concepts relevant to these works,

including the replica trick, universal conductance fluctuations, spin glasses, and SYK models.

1.4.1 THE REPLICA METHOD

A central obstacle in the study of disordered systems is an accurate treatment of static, or
quenched, disorder. In these scenarios, disorder is not a dynamical degree of freedom that
can respond to electronic fluctuations in order to lower the energy of the system - it is a
fixed background configuration. Calculating properties of individual disorder realizations
is infeasible, and one must find a way to calculate disorder-averaged expectation values of
observables while respecting their privileged position above the other degrees of freedom in
the model. A number of techniques have been developed for this, including the Keldysh path
integral, supersymmetric methods, and the replica trick, the latter of which will be employed

in this dissertation and we review below.
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The central dilemma of disorder is that observables are given by a ratio of path integrals,

DoO(x)etSeh] 0
(O = 2. f¢D ¢>(e£9 i = 5y 2 (1.10)

where O(z) is some function of the fields ¢, h represents some disorder potential, and in
the final line we have re-expressed the observable as a derivative of the path integral with O
coupled to some source field J. Naively integrating over h by adding it to the path integral,
while computationally straightforward, is incorrect as both the numerator and denominator in
the middle expression must correspond to the same disorder realization. In order to faithfully
treat the disorder, we use the identity

n __
InZ = lim z 1 .
n—0 n

(1.11)

The quantity Z™ consists of n “replicated” copies of the fields. In this replicated space, the
disorder can be integrated out - doing this integral will generally couple different replicas.
Observables are calculated as a function of n and the limit n — 0 is taken at the end of the
calculation. While formally correct, analytically continuing to non-integer values of n and

taking the n — 0 can be a delicate process.

1.4.2 DISORDER IN WEAKLY-INTERACTING SYSTEMS

Some of the earliest progress in understanding the effects of disorder was in the context of
weakly-interacting metallic systems, and in particular the implications of disorder on transport
properties. An early breakthrough was the phenomena of Anderson localization [16], where it
was observed that electronic wavefunctions in non-interacting systems are highly susceptible
to localization in the presence of disorder, which leads to insulating behavior. This led to
a scaling theory of localization [1], which demonstrated ... Interference between random
quantum trajectories leads to diffusive particle-hole excitations known as diffusons as well as
weak localization corrections to conductance [2, 18, 167].

A striking observation, which will be of relevance to Chapter 4, is the phenomenon of

universal conductance fluctuations [10, 12, 272, 273]. Disordered metallic samples will display

19



Chapter 1. Introduction

random fluctuations in their measured conductance between different samples, or as a function
of tuning a parameter such as chemical potential or applied magnetic field. Remarkably, the
magnitude of these fluctuations are found to be O(1) in units of the conductance quanta e?/h
and insensitive to microscopic details such as disorder strength; the coefficient only depends
on a small number of details, such as the dimensionality of the sample and the number of
channels. An intuitive picture of this phenomena as a function of magnetic field can be
seen by noting that the Aharonov-Bohm effect leads to periodic oscillations in conductance
due to quantum interference effects; the periodicity of these oscillations are dependent on
the magnetic flux, and one may roughly think of an electron travelling diffusively through a
conductor as forming many such loops with random areas. Indeed, the phenomena of universal
conducatnce fluctuations is fundamentally a quantum interference effect, which suggests its
independence on disorder strength. Early microscopic derivations [10, 12, 272, 273] eventually
gave way to a statistical random matrix theory of quantum transport[29, 216]. The latter
theory took a symmetry-based approach of modeling the scattering matrices of a conductor as
random matrices, with the overall structure only determined by the symmetries of the system
and the number of channels - the probability distribution of these matrices falls under the
class of ensembles known as circular ensembles. This philosophy closely mirrors the original
introduction of random matrix theory to physics by Wigner [521], who argued that the energy
levels of complex nuclei can accurately be modeled by random Hamiltonians whose ensemble
only contains information about the symmetry of the system. Remarkably, the magnitude
of the fluctuations of quantities in these ensembles are universal and correctly reproduce
expected results for universal conductance fluctuations. As these conductance fluctuations
are indicative of coherent quasiparticle excitations, a motivating question of Chapter 6 is to
understand conductance fluctuations in non-Fermi liquids where no well-defined quasiparticles

exist.

1.4.3 SPIN GLASSES

When strong interactions localize electrons, the residual degrees of freedom are encoded in
the spin-1/2 moments of the electron, leading to models of quantum magnetism like the

ones discussed in the context of spin liquids in Section. The presence of strong disorder in
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the spin interactions can prevent the formation of conventional magnetic order, much like
geometric frustration for spin liquids. In contrast to spin liquids, disordered interactions
breaks translational symmetry, so LSM theorems do not constrain the possible ground states
of these models. A possible phase unique to disordered systems is a spin glass phase, which
is studied in more detail in Chapter 7. Roughly, one may think of a spin glass as a state
where each individual spin points in a random direction, but not in an arbitrary manner -
each spin is pinned by the disordered interactions in an attempt to satisfy all the competing
random interactions. The large amount of randomness and frustration means that the low-
energy landscape will consist of many distinct such configurations, each of which doing an
approximately equally mediocre job at satisfying every interaction.

Spin glasses lead to ergodicity breaking; the complex energy landscape, with many local
minima not related to each other by simple transformations, means that a particular realiza-
tion of the system will get stuck in one minima and not explore the full range of states. Note
that ergodicity breaking is a generic property of symmetry-breaking states; an Ising ferromag-
net, for example, will break ergodicity by getting stuck in one of two possible ordered states.
The unique property of spin glasses is to break ergodicity without developing any detectable

form of long-range order. This can be quantified by the order parameters

1
m= —

= i= 5 2 (8)(8) (112

i

> (8

i

The quantity m measures ferromagnetic order, and is easily generalized to include other forms
of magnetism such as antiferromagnetism. The quantity ¢ is non-zero for a ferromagnetic
phase, but is also non-vanishing for a spin glass phase, where each site picks out a definite
random orientation. Calculation of these quantities within the replica formalism requires
careful analysis of replica-off-diagonal saddle points, of which the Parisi solution [354] is the
most well-known.

Both classical and quantum spin glasses have been extensively studied over the last sev-
eral decades. Classical spin glasses probe static equilibrium properties of a classical partition
function. Zero-temperature quantum spin glasses with quenched disorder, however, have prop-

erties distinct from their classical counterparts. One can immediately see from the respective
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partition functions that a d-dimensional disordered quantum model differs dramatically from
its d + 1 classical analogy; the disorder in the former case is static in the temporal direction.
Moreover, one can probe dynamical quantities in the quantum theory; with this perspective,
one can naturally define an alternate probe of spin glass order in terms of the autocorrelation

of a spin

_ . 1 =
g=lim > (Si(r) - 5i(0)). (1.13)

i
A non-zero g indicates slow, glassy behavior - individual spins are frozen in time and retain
memory of their initial state. Assuming factorization of the correlation function, one finds
that the two definitions of spin glass order are equivalent, i.e. § = g [388]. The presence of a

non-zero g implies a delta function peak in the dynamical structure factor,

1 — —
S@ =3 3 [ dr G S0 =aw) + ... (1.14)
i
Measuring this delta function peak is the method used to detect spin glass order in Chapter 7.

1.4.4 SYK MODELS AND DISORDER

A recent application of disorder over the last several decades has been to systematically con-
struct classes of strongly-interacting models which retain exact solvability in the thermody-
namic limit. The essential ingredients in these models tend to involve fully-disordered Hamil-
tonians with a large number of species of particles. Strong self-averaging leads to a reduction
to a single species of fermion interacting self-consistently with a bath. For zero-dimensional
systems with all-to-all interactions, this effective reduction to a single-site problem can be
understood as a limit where dynamical mean-field theory (DMFT) becomes exact, although
this analogy is less clear for finite-dimensional systems. The number of fermion flavors gives
a large parameter which allows for a mean-field solution that is exact as the number of flavors
goes to infinity.

A simple demonstration of this simplification is in the SYK model with Majorana fermions
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[246, 303, 420]. The Hamiltonian of this model is

1
H=- %: ikt X3 Xk X1 Xm (1.15)
jklm

where x;, 7 = 1... N are Majorana fermions and Jjx, is a real random variable with zero

312

mean and variance %

Introducing M replicas and taking the disorder average, we obtain

4

— 1 NJ? 1
77 = [Dxexp |33 [arxgong + 25 [ [arar | £ @)
o, a,B J
(1.16)
Here, we see a massive simplification, as the term in parenthesis is a local quantity. Introducing
the field Gog(7,7') = & > X?(T)X?(T/) and a Lagrange multiplier X,3(7, 7’) to enforce the

equality, we can integrate out the fermions and obtain the action

M — /DEDGexp(—I [=,Q))

2

JZGaﬁ(Ta 7")4>

(1.17)

1
I,G]=N | -InPf(-0. - %) + B Z/dT dr’ (Zaﬁ(T, ™Gop(T,7') —
a’ﬁ

Due to the explicit factor of N in the action, the saddle-point of the action as a function of
(2, G) is exact in the large-N limit. Assuming a replica-diagonal ansatz, i.e. Gog = X3 =0
for « # 8 and Gao = G, Yoo = X, the saddle-point solutions can be solved numerically,
although many of the remarkable properties of this model are obtainable analytically by
working in the conformal limit (8J > 1), where the 9, term can be neglected to leading
order.

This method of using self-averaging properties of disorder to obtain an exact large-N saddle
point is quite robust, and has been used to great effect in studies of non-Fermi liquids [85]
and strange metals [356]. However, note that oftentimes in these models, the disorder is only
a means to an end and does not play any role beyond generating a set of exact Schwinger-
Dyson equations. This is related to the observation that SYK models are often strongly self-
averaging, where properties of individual disorder realizations quickly approach the ensemble

average in the thermodynamic limit. In fact, disorder-free SYK models exist [523] which bear
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close resemblance to tensor models [47] and can be used to recover replica-diagonal actions
of the form in Eq. 1.17. However, there are situations where the random nature of the model
plays an essential role. Detecting spin glass instabilities in these disordered models requires
careful consideration of replica-off-diagonal fluctuations [86, 484]. Localization effects due to
randomness can have important consequences for transport in SYK-like theories of strange
metals [357]. Finally, which is the main focus of Chapter 4, statistical fluctuations of observ-
ables in SYK models display distinctive behavior as compared to weakly-interacting disordered
systems. These fluctuations require consideration of replica-off-diagonal fluctuations, albeit

starting from a replica-diagonal saddle point.

1.5 NUMERICAL METHODS FOR MANY-BODY SYSTEMS

A natural application of the rapid growth in computational power and resources is to analyze
these many-body states. However, brute-force applications of these tools - for example, by
evaluating a path integral via numerical integration, or by directly diagonalizing the many-
body Hamiltonian when the Hilbert space is finite - are plagued by the curse of dimensionality,
where the computational cost of these problems grows exponentially with the number of
particles. For a system of particles which each have a finite Hilbert space of dimension D,
this scaling can be seen explicitly in virtue of the many-body Hilbert space of N particles
being a tensor product of N single-particle Hilbert spaces and whose resulting dimension is
N,

As a consequence, computational many-body physics has grown into an extremely rich
field. Dozens of distinct approaches to tackling the many-body problem have been developed,
each with their own set of approximations and strengths. Several chapters in this dissertation
focus on such computational methods. Here, we provide a broad but non-exhaustive overview
of some of the modern numerical methods which are either used explicitly in this dissertation
or whose results by other researchers play a central role in parts of this dissertation.

It is important to note that numerical methods will look quite different depending on the
level of abstraction (or to be more quantitative, on the energy scale) that one is working

with. Despite a shared goal of predicting the properties of complex quantum systems, ab
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initio methods of deriving the band structure of a complex crystal differ substantially from
quantum chemistry modeling of molecule binding energies, with both being distinct from the
more abstracted problem of finding the ground state of a model many-body Hamiltonian. Of
course, each of these methods can benefit substantially from advances in neighboring fields,
and accurate predictions at all energy scales is essential for the broader goal of accurately

studying strongly-interacting materials.

1.5.1 EXACT DIAGONALIZATION

Exact diagonalization is the most straightforward method of studying a many-body system
with a finite Hilbert space. The many-body Hamiltonian is represented by a matrix exponen-
tially large in the number of particles, and this matrix is diagonalized using standard numerical
linear algebra routines. The performance of this method can be improved primarily through
two methods. The first is through symmetry - if a Hamiltonian possesses some symmetry,
it will be block diagonal in a symmetric basis of states. Diagonalizing the Hamiltonian only
within a given symmetry sector reduces the size of the matrices to be diagonalized, although
generically the size will often still scale exponentially in the number of particles. The second
technique, which is appropriate if one only cares about properties of eigenvectors near the
edge of the spectrum, is to use iterative method such as the Lanczos algorithm to extract
low-lying eigenvalues. These iterative methods have the advantage that the full Hamiltonian
does not need to be initialized in memory - one only needs to be able to perform matrix-
vector multiplication with the Hamiltonian, which can be accomplished by memory-efficient
functions f : ¥ — ¢ which mimic these multiplications.

Despite its inefficiency, exact diagonalization is an essential technique in many-body physics.
Practically, it is quite simple, with essentially the only nuances in interpreting the results
coming from finite-size effects. It provides a benchmark for small system sizes with which
approximate methods can compare to. Although it is rare to face a problem where obtaining
the full spectrum explicitly is necessary, such cases do exist, such as statistical properties of
the many-body spectrum in disordered systems [173] as well as recent applications of “fuzzy
sphere” regularization [568, 574] where the full spectrum can give insight into the operator

content of a conformal field theory.
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Two recent algorithmic developments are worth mentioning, as they appear prominently
in Chapter 7. The first involves the evaluation of finite-temperature quantities using the
Lanczos algorithm, where the notion of thermal pure quantum states [469, 470] is employed.
A more detailed analysis of this is provided in Appendix E. The second development pertains
to efficient parallelization of the Lanczos algorithm across distributed computing clusters, as
developed in [519]. Modern supercomputing clusters consist of large numbers of “nodes,” each
with its own CPU and memory, with moderately fast communication between the nodes. As
a result, the computation tasks that make the most use of these resources are not “embar-
rassingly parallelizable” tasks where computation consists of independent code running on
many CPUs in parallel - for example, Monte Carlo simulations with different random seeds -
with the results combined at the end with a minor post-processing step. Nor are tasks with
a high amount of communication between different nodes appropriate, as memory transfer
between nodes is still orders of magnitude slower than intra-node communication and can
easily become a bottleneck. The best algorithms for these clusters make moderate use of
communication between nodes and appropriately “balances” the CPU usage between cores.
To implement matrix-vector multiplication for the Lanczos algorithm across multiple nodes,
each node stores some component of the vector. Matrix multiplication is split up into two
steps - multiplication within a node that does not require communication between nodes, and
multiplication that does require communication. Organizing principles such as locality of the
Hamiltonian can be employed such that an optimal basis is chosen that minimizes communi-
cation between nodes; however, some portion of the basis set is kept randomized in order to

sure that the computational load is evenly distributed.

1.5.2 TENSOR NETWORK METHODS

A class of numerical methods for studying many-body Hamiltonians take a variational ap-
proach. Given a Hamiltonian, one constructs a class of variational wavefunctions parame-
terized by a set of parameters, and the energy of the wavefunction is minimized within this
class of variational wavefunctions. The essence of the problem is to construct adequately
expressible variational wavefunctions which both have a small number of parameters and for

which observables can be efficiently calculated.
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Matrix product states [253] (MPSs), and tensor networks more broadly, have established
themselves as highly versatile and efficient wavefunctions. The simplest example is the wave-
function of an N-site chain of spin-1/2 qubits, for which the coefficients of the MPS wave-
function are given as

(s1,82,...sn|¢p) = Tr[A®L A% .. A5N] (1.18)

where s; € {0, 1} is the local basis of states. The wavefunction is determined by N d x x X x
tensors A%, where d = 2 is the local Hilbert space dimension and yx is referred to as the bond
dimension of the MPS. Any arbitrary state can be represented for sufficiently large bond
dimension; however, the power of MPS is that many states can be described to good accuracy
with computationally-tractable bond dimension size. This ties in closely with the concept of
entanglement; it has been shown that the ground state of any gapped 1D Hamiltonian can be
accurately represented by an MPS with finite bond dimension [493], which is connected to the
fact that both exhibit area law entanglement entropy. Correlation functions of MPS states are
therefore generically exponentially decaying, although algebraic decay can be approximated
by taking a large enough bond dimension.

MPSs are highly efficient to work with - evaluating the expectation value of operators can
be performed using matrix product operators (MPOs) and without the need for Monte Carlo
sampling like many other variational methods. Moreover, the density matrix renormaliza-
tion group [514] (DMRG) is a highly efficient algorithm for optimizing an MPS for a given
Hamiltonian.

MPSs fall into a broader class of tensor network states, which can be used as variational
wavefunctions for a wide class of quantum systems. The practical usage of any given tensor
network depends on the efficiency with which one can evaluate (or “contract”) the tensor
network. MPS states are very powerful in this regard, as the evaluation of observables can be
done with a complexity that is polynomial in d, N, and y (the precise details of the complexity
are dependent on the problem at hand). For higher-dimensional generalizations, performing
efficient contractions is the primary bottleneck in implementing tensor network states.

While MPS states are able to capture gapped 1D states to extremely high accuracy, the

ability to describe both gapless and higher-dimensional states are more non-trivial. 1D gapless
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states pose less of a difficulty, as careful extrapolation of observables as a function of bond
dimension allows for the extraction of power law correlation functions. For higher-dimensional
systems - in particular, the 2D frustrated antiferromagnets, which are a focus of much of this
thesis - there are two main approaches. The first is to adapt a “quasi-1D” geometry, where an
MPS is wrapped around a cylinder of radius NNV, and length N,, with N, > N,. The second
is to use a non-MPS tensor network, with projected entangled pair states [492] (PEPs) being
the most common tensor network for 2D systems. Both these approaches are used in studies
of frustrated magnetism in two dimensions, and results from these studies on square lattices
is leveraged in Chapter 2 where we study phase transitions of a putative spin liquid phase

appearing in the square lattice antiferromagnet.

1.5.3 DYNAMICAL MEAN-FIELD THEORY

Dynamical mean-field theory (DMFT) [154] provides complimentary results to the models
of study in Chapter 7. Formally, DMFT can be viewed as an improvement on the starting
point of free electrons by including an arbitrary, but local, electron self-energy. Assuming all
interactions in the problem are on-site, the problem is effectively reduced down to a single site
model with all the interactions of the original model, but coupled to a free bath of electrons.
This closely mirrors the philosophy of standard mean-field theory calculations, where a single
site problem is solved in the presence of an effective potential generated by all the other sites.
An important self-consistency loop is imposed by insuring that the local Green’s function of
the lattice - which contains information about the band structure and dispersion - agrees with
the Green’s function of the single site impurity model. The coupling of the local impurity to
the bath is tuned until this self-consistence is reached.

Due to the retarded interactions with the bath, numerically solving the impurity model is
still a non-trivial quantum problem. However, the fact that many distinct systems reduce
down to solving this impurity problem in the DMFT approximation has motivated subtantial
development of numerical methods for tackling this problem. Methods range from exact
diagonalization, functional renormalization group, quantum Monte Carlo, and tensor network
methods. The fact that the impurity model must be solved not just once, but repeatedly until

convergence is reached, makes the problem highly non-trivial.
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A noteworthy example of when a many-body problem often reduces down exactly to an
effective impurity model is when interactions between electrons are disordered and all-to-all.
A demonstration of this simplification was already shown in the discussion of SYK models
in Section 1.4.4. A relevant example of work where impurity solvers are used extensively is

in [73, 118], which focused on a model of spinful electrons
H = Ztijcjgcj'g +U Z NN + Z JijSi . Sj (1.19)
ij i ij

where the hoppings ?;; and Heisenberg interactions J;; are random and all-to-all. By em-
ploying the replica formalism to integrate out the disorder and assuming a replica-diagonal
ansatz, the model reduces to an effective single-site problem whose action is

B B
S = —ﬂZcT,(iwn + p— A(iwy))co + U/ drnyn — J;/ drdr’ Q(t —1")S(7) - S(7')
0 0

n,o

(1.20)
where the hybridization function A and spin-spin retarded interaction @) are determined self-

consistently by
A1) = =t} (Teo(1)ch(0)),  Q(r —7') = 2(S(r) - S(T)).. (1.21)

which can be solved using the CT-INT algorithm [401]. In certain scenarios, as shown in
Section 1.4.4, the resulting impurity model simplifies dramatically can be solved through self-
consistently solving a set of coupled Schwinger-Dyson equations for the impurity. Obtaining
such a justified “classical” limit requires a large parameter, such as the system size, to appear
as a coefficient in front of the impurity action. This simplification tends to happen for Sachdev-
Ye-Kitaev models [168]. A version of this model for complex spinless fermions, of relevance

to Chapter 6, is given by the Hamiltonian

H = Z tijCICj + Z Jijklcgc}ckcl . (1.22)
i ijkl

For Eq. 1.19, this simplification does not happen due to the random Heisenberg interaction;

however, generalizing the SU(2) spin interactions to SU(M) admits a large-N , M expansion.
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It is worth noting that beyond lattice models, DMFT has found considerable application in
ab initio electronic structure calculations by supplementing density functional theory in order
to account for strong electronic correlations and capture phenomena such as metal-insulator

transitions [257].

1.5.4 VARIATIONAL MONTE CARLO

The term “variational Monte Carlo” (VMC) is quite vague; by definition, it refers to a general
class of variational wavefunctions whose properties can only be inferred through some sort
of stochastic Monte Carlo sampling. This can encompass quite sophisticated wavefunctions
such as neural quantum states, discussed in the following subsection. Here, we will outline
the general principles and discuss some simple examples of VMC.

A general input to a VMC calculation is a variational wavefunction [¢,) which depends on
a set of parameters a. We assume that the state |¢,) is too complex to work with directly,
but importantly, is simple enough that the quantities (a|¢,) can be computed for a complete
set of many-body states (a|, which we will generally take to be in a real space basis. If this is

true, then the expectation value of an observable O can be written in the form

2 (a[Ol¢pa

(Wal Olva) _ Lol "G 3, p(@O(a) (123
(Yaltba) Sal@ala)®  Xapla)

Hence, evaluation of the observable O over the exponentially-large many-body Hilbert space
can be performed efficiently using Monte Carlo sampling of the local expectation value O(a)
guided by the positive-definite probability distribution p(a). Computation of the local ob-
servable O(a) is possible when (a| O = >, (b] Ogp for a relatively small (polynomial in the
system size) number of new many-body states (b|.

The most relevant VMC calculations to this dissertation are for quantum spin liquid states,
where the variational wavefunctions [i,) are Gutzwiller-projected fermionic spinon wavefunc-
tions. To be more precise, one constructs a mean-field ansatz of fermionic spinons using the
techniques outlined in Section 1.2.1. Starting from this state [¢)y), one applies a Gutzwiller
projection Pg = [[,(1 — njyn;y), which removes all doubly-occupied sites and projects the

wavefunction in the enlarged Hilbert space of fermionic spinons to the physical space of spin-

30



Chapter 1. Introduction

1/2 moments. Mathematically, this Gutzwiller projection is equivalent to integrating over the
gauge field in the limit where there is no action for the gauge field. This final wavefunction,

|Y) = Pq |1o), is amenable to VMC calculations, as we have the simple rule

(althp) mno double occupancy in a
(aly) = (1.24)

0 otherwise

The overlap (alt)p) can be computed efficiently because they are both non-interacting states

with the overlap determined by a determinant calculation with polynomial complexity.

1.5.5 NEURAL QUANTUM STATES

The advent of machine learning and neural networks has had wide-ranging impacts in the-
oretical physics. Neural quantum states [70] (NQSs) are one such application, which comes
from a remarkably simple application of a neural network. The simplest way of thinking
about a neural network, which is sure to offend any computer scientist, is that it is nothing
more than a highly-expressible and efficiently-trainable function of many variables. Given
our previous discussion of variational methods, it is easy to see how such functions can be
extremely powerful.

NQSs have found much application in the study of frustrated quantum spin models. The
bosonic degrees of freedom with a small local Hilbert space dimension make NQSs well-
equipped to describe wavefunctions of such models. Abstractly, the NQS is simply a function
f:{0,1} — C, which for a configuration of N spins {o;} returns the wavefunction v({c;}).
The performance of this function is heavily dependent on the choice of neural network ar-
chitecture. A wide variety of networks have been studied, including restricted Boltzmann
machines [70], feed forward neural networks [64], convolutional neural networks [281], and
transformer networks [496]. Physics-informed considerations in neural network design have
led to convolutional techniques which respect lattice translational symmetries [64], and im-
proved architectures which explicitly respect all lattice symmetries [398]. NQS wavefunctions

E

have obtained the lowest energies to date on frustrated square lattices [395] and triangular

lattices [398], although it should be stressed that the energy difference between competing
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methods such as DMRG is extremely small - for the frustrated square lattice, the relative
error on DMRG as compared to NQS is less than 1%. Broader considerations regarding the
applicability of NQS wavefunctions include the scalability to larger systems as well as the
difficulty in optimization; unlike DMRG, estimating the energy of a NQS involves relatively
slow Monte Carlo sampling, and the number of variational parameters can approach 10°.

A major obstacle with neural quantum states is the representation of fermionic wavefunc-
tions, as the antisymmetry of the fermionic wavefunction must be respected. Substantial
progress on this has been made in recent years through a number of methods. These methods
often take the approach of using an explicitly antisymmetric parameterization of a fermionic
wavefunction, such as a Slater determinant state, and enhancing its expressivity through neu-
ral network modifications built on top of this wavefunction, such as using a neural network to
parameterize backflow corrections [297], or by projecting a Slater determinant in an enlarged

Hilbert space [150, 397].

1.5.6 STOCHASTIC SERIES EXPANSION

The stochastic series expansion (SSE) differs from the previous numerical methods described,
in that this method is primarily applicable to bosonic models with finite local Hilbert space
dimension. This includes quantum spin models - a central theme of this dissertation - as
well as models of hardcore bosons. This method involves Monte Carlo sampling and hence
may exhibit a sign problem; however, for models where a sign problem is absent, this method
is often the most powerful option as it avoids the Trotterization errors present in alternate
stochastic formulations of the path integral.

The approach of SSE consists of a stochastic evaluation of the partition function through
a high-temperature expansion. The quantum partition function, Z = Tr [e‘ﬁH ], can be

expanded in powers of 3 to obtain the expression
o 6”
Z = ZomTr[H"] (1.25)
n—

Two additional steps are required in order to put the partition function in a form adequate

for SSE. First, the trace is replaced by a sum over a complete set of states |a). Second,
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the Hamiltonian must be decomposed in a fashion H = ), Hj, such that generic expressions
of the form («| Hp, Hy, ... Hp, |o) can be efficiently evaluated. A common way of satisfying
this is to ensure Hp|a) o |o), i.e. each basis state gets mapped to a single new basis state,
such that (o| Hy, Hp, ... Hyp, |@) is only non-zero if the successive applications of Hj, map |o)
back onto itself. Provided these quantities are real and positive, the partition function can be
represented as a stochastic sum over configurations {n, a, by, bs...b,}.

The nature of the sign problem in SSE is less readily apparent than in DQMC, the ab-
sence of which in the latter can often be tied to a particular symmetry. For quantum spin
systems, an important factor is frustration. The difference between a ferromagnetic and an
antiferromagnetic Heisenberg model with nearest-neighbor interactions is just the overall sign
of the Hamiltonian. As it is powers of this Hamiltonian that appear in the SSE, one can
show that a ferromagnetic Heisenberg model does not have a sign problem with SSE, whereas
an antiferromagnetic one generically does. This is not the full story, however. For bipartite
lattices, one can show that negative signs always appear in pairs for non-vanishing values
of (o] Hy, Hy, - .. Hp,, |a), and hence sign-problem-free SSE simulations are permitted. It is
possible to add in non-trivial interactions on top of nearest-neighbor antiferromagnetic cou-
plings which preserve the positivity of the weights - in particular, a class of models known as
J — @ models on the square lattice support transitions between Néel antiferromagnetism and
valence bond solid order. The lack of large-scale sign-problem-free Monte Carlo simulations
for antiferromagnets on non-bipartite lattices such as the triangular lattice is a motivation
for the results in Chapter 3, where an effective sign-problem-free model is constructed with
partons (sign-problem-free models on non-bipartite lattices have, however, been studied for

integer spin systems where the SU(N) spin rotation symmetry is replaces with SO(N) [234]).
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Zeus, the ruler of the Olympian gods, often conceals
his identity by changing himself into different forms.
Strongly interacting conformal field theories (CF'Ts),
which underlie many different states of matter, can
sometimes also be described by Lagrangians with very

different forms.

Cenke Xu

Deconfined criticality and a gapless Zs spin liquid in the square lattice

antiferromagnet

2.1 INTRODUCTION

Antiferromagnetism on the square lattice became a topic of intense study soon after the
discovery of high temperature superconductivity in the cuprates, and it continues to be a
wellspring of interesting experimental and theoretical physics. It was established early on that
the insulating antiferromagnet with S = 1/2 spins on each site, and only nearest neighbor
antiferromagnetic exchange interactions (J;) has long-range Néel order in its ground state
i.e. global SU(2) spin rotation symmetry was broken with the spin expectation value (S;) =
1;Nog where S; is the spin operator on site ¢, 17; = +1 on the two checkerboard sublattices,
and Ny is the antiferromagnetic moment. Much attention has since been lavished on the
insulating J1-J5 antiferromagnet [75, 98, 153, 204, 391, 416], which also has a second-neighbor
antiferromagnetic exchange interaction J;. The key questions are the nature of the quantum
phases of the model, and of the quantum phase transitions between them, as a function of
increasing Jo/J; after the Néel order vanishes at a critical value of Jy/J;. These questions

are also the focus of our attention here.
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Figure 2.1: Phases of the S = 1/2 J;-J antiferromagnet on the square lattice, from the
numerical results of Refs. [140, 290, 342, 505], all of which agree that the spin liquid is
gapless. Each ellipse in the valence bond solid (VBS) represents a singlet pair of electrons.
Lower part of figure adapted from Ref. [32].

An early proposal [389-391, 416] was that there was a direct transition from the Néel state
to a valence bond solid (VBS) (see Fig. 2.1) which restores spin rotation symmetry but breaks
lattice symmetries (followed by a first order transition at larger Jo/J; to a ‘columnar’ state
which breaks spin rotation symmetry, and which we do not address in the present paper).
A theory of ‘deconfined criticality’ was developed [328, 434, 439] showing that a continuous
Néel-VBS transition was possible, even though it was not allowed in the Landau-Ginzburg-
Wilson framework because distinct symmetries were broken in the two phases. Evidence has
since accumulated for the presence of a VBS phase in the J;-J2 model, but the nature of the
Néel-VBS transition in this model has remained a question of significant debate. However, in
the past year, a consensus appears to have emerged [32] among the groups investigating this
question by different numerical methods [140, 290, 342, 505], and is summarized in Fig. 2.1:
there is a narrow window with a gapless spin liquid phase between the Néel and VBS states.
This gapless phase has been identified [68, 139, 140, 194, 212] as a Zy spin liquid [244, 391,
416, 510] with gapless, fermionic, S = 1/2 spinon excitations with a Dirac-like dispersion
[212, 245, 435, 437, 511], labeled Z2A 2213 in Wen’s classification [511].

The starting point of our analysis is the fermionic spinon dual [459, 462, 480, 500] of the
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Figure 2.2: Mean field phase diagram of our low energy theory obtained by minimization of the
Higgs potential in Eq. (2.39). Dashed (solid red) lines indicate second (first) order transitions
in mean field theory. We assume the SU(2) w-flux gauge theory confines to a Néel state, the
U(1) staggered flux gauge theory confines to a VBS state, except at their deconfined critical
boundaries to Wen’s stable, gapless Zo spin liquid Z2Az213. The dotted blue line indicates a
possible trajectory of the square lattice antiferromagnet with increasing Jo/J;. However, we
cannot rule out interchanging the assignments of the confining states between the SU(2) and
U(1) spin liquids. The mean-field analysis was performed with w =u =1, v = —1, u = 0.75,
and v4 = 0.5 in Eq. (2.39). We use the ansatz ®f = ¢104z, P§ = c1day, and P§ = c2dq., so the
terms in V(®) proportional to vy, v3 are automatically zero.

bosonic spinon CP! model used earlier [389, 390, 434, 439] to describe the Néel-VBS transition.
This fermionic dual is a relativistic SU(2) gauge theory of 2 flavors of 2-component, massless
Dirac fermions carrying fundamental gauge charges: this formulation is preferred over the
bosonic spinons because the massless Dirac fermions connect naturally to the gapless fermionic
spinons in the Zs spin liquid. Recent studies [182, 301, 332, 506] have indicated that the 2
fermion flavor SU(2) gauge theory does not ultimately describe a conformal field theory needed
for Néel-VBS criticality, but exhibits a ‘pseudocriticality’ associated with a proximate fixed
point at complex coupling [164, 165, 299, 500]. Ref. [480] used connections to bosonic spinon
theories to argue that the 2 fermion flavor SU(2) gauge theory was ultimately unstable to
confinement and symmetry breaking leading to the appearance of Néel order. We assume this
is the case, and we can then describe the transition to the Zy spin liquid by the condensation
of Higgs fields which break the SU(2) gauge symmetry down to Za: see Fig. 2.2. The Néel-Zo

spin liquid transition is a confinement-Higgs transition, and the critical theory is proposed
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to be a 2-flavor SU(2) gauge theory with critical Higgs fields [480]. We note that a similar
critical theory was proposed in Ref. [151] for a continuous transition from the Néel state to a
different gapless state with a Zy gauge field (the ‘orthogonal semi-metal’), and this scenario
was supported there by quantum Monte Carlo simulations. Evidently, it is possible that
critical Higgs fields can stabilize a scale-invariant critical point of the 2-flavor SU(2) gauge
theory at the boundary of a Higgs phase where the SU(2) gauge symmetry is broken down to
Zs.

As we will see below, an important difference between our critical Higgs SU(2) gauge theory
and that of Ref. [151] is that our theory does not preserve Lorentz invariance. The Lorentz
symmetry is broken by the Yukawa couplings between the Higgs fields and fermions. The
Yukawa couplings also do not preserve the SO(5) flavor symmetry of the SU(2) gauge theory
with only fermionic matter; this symmetry rotates between the Néel and VBS states. Both
these features have important consequences for the Néel-Zs spin liquid critical point, and lead
to predictions described below which can tested by numerical studies.

In earlier work, Ran and Wen [381, 384] had considered the 2-flavor SU(2) gauge theory
as the description of an extended gapless phase on the square lattice—also called the 7w-flux
phase [3]. They proposed a theory for a transition from the 7-flux phase to the Z2Azz13
spin liquid by the condensation of a pair of adjoint Higgs fields, which we denote 51,2 (the
vector symbol implies gauge SU(2) adjoint index). In light of our arguments above on the
confining instability of the m-flux phase to the Néel state, the critical Higgs theory of Ran
and Wen [381, 384] can serve as the deconfined critical theory for the Néel to Z2Azz13 spin
liquid transition. However, as we shall see in Section 2.4, additional ‘dangerously irrelevant’
terms are needed to fully define the critical theory in a 1/Ny expansion, and these contribute
a logarithm-squared renormalization.

The mean-field phase diagram of the SU(2) gauge theory with adjoint Higgs fields describ-
ing the m-flux to Z2Azz13 transition turns out to naturally acquire an additional phase, as
explained in Section 2.3.4—this is the U(1) staggered flux spin liquid [3]. We show that the
adjoint Higgs field

By ~ By x By (2.1)
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(see Eq. (2.43)) is precisely that required to go from the SU(2) m-flux phase to the U(1)
staggered flux phase. Specifically, starting from the m-flux phase, if both 51,2 condense with
(®1) x (By) # 0, we obtain the gapless Zy spin liquid (the simultaneous condensation of ®;
and @5 does not require fine tuning because of symmetry constraints that we will describe).
On the other hand, Eq. (2.1) implies that if only the composite field &, x 5 condenses, but
the individual fields 5172 do not, then the 7-flux phase turns into the U(1) staggered flux
phase. Speaking imprecisely, starting from the parent m-flux phase, the Higgs condensate for
the gapless Zs spin liquid is the ‘square root’ of the Higgs condensate for the staggered flux
phase. (Let us also note that Song et al. [459] proposed that a trivial monopole would drive
the the staggered flux state into the m-flux state: so the Higgs field ®3 can be viewed as a
‘dual’ description of the trivial monopole, and induces a transition in the opposite direction.
Four-fermion terms have also been proposed as a route to reducing the emergent symmetry
of the staggered flux state to that of the w-flux state [531].) The phase diagram of the Higgs
fields 51,273 is computed in Section 2.3.4 and shown in Fig. 2.2. We propose here that the
transition from the gapless Zs spin liquid to the VBS state is described by the deconfined
critical theory appearing at the onset of the U(1) spin liquid. Other works [437, 459, 462]
have discussed the possible instability of this U(1) spin liquid to either Néel or VBS order
via monopole proliferation. The critical U(1) gauge theory is described briefly in Section 2.5,
where we show that it does not contain the dangerously irrelevant terms found in the critical
SU(2) theory.

We will review the derivation of the Ran-Wen theory, and discuss its symmetry properties
in some detail in Section 2.2 and Appendix A.1. A continuum SU(2) gauge theory coupled
to 3 adjoint Higgs fields and gapless Majorana fermions will be obtained in Section 2.3. The
critical SU(2) gauge theory for the onset of the gapless Zs spin liquid phase from the 7-flux
phase will be presented in Section 2.4, along with an analysis of its properties in a 1/Ng
expansion. The critical U(1) gauge theory for the onset of the same gapless Zso spin liquid

from the staggered flux phase appears in Section 2.5.
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2.2 GAPLESS Z, SPIN LIQUID

The fermionic spinon theory of Zs spin liquids proceeds by re-expressing the spin operators

in terms of spinons f;q, o =1, | at site ¢ = (iy, ;) of the square lattice using
1 f
S; = 5 Z finOasfis - (2.2)
a?/B

We write down a Bogoliubov Hamiltonian for the f;, to obtain a Zs spin liquid. Following

Wen’s notation [511], we introduce the Nambu spinor

fit
fu
resulting in the Bogoliubov Hamiltonian
H=-)" Yliug; . (2.4)
ij
Here,
Uij = iugj +ug T + uijy +ug; 77, (2.5)

with 7¢ Pauli matrices acting on the Nambu indices of ;. Invariance under global SU(2)

spin rotation requires that the uf ; are all real numbers obeying

This fermionic spinon representation has a SU(2), gauge symmetry, under which
SU(2)g : i — Uy iti. (2.7)

and a corresponding transformation for u;;.
We will provide 3 different ansatzes for the u;; in the Z2Az213 spin liquid, each suited

for different purposes. The 3 ansatzes are, of course, related to each other by SU(2), gauge

39



Chapter 2. Deconfined criticality and a gapless Zo spin liquid in the square lattice

antiferromagnet

—te'? A—te' 1
B éew A tgiéb
rt€¢¢ y—te'? A
At g te?

Figure 2.3: Nearest-neighbor fermionic spinon hopping showing the A (i, + i, even) and B

(i + iy odd) sublattices.

transformations. Wen’s ansatz for the Z2A 2213 spin liquid is given in Appendix A.1, where the

continuum Lagrangian describing the different spin liquid phases is deduced from symmetry

fractionalization considerations. In the main text, we obtain the continuum theory directly

from the lattice model, for which the ansatz given in Eq. (2.12) will be most useful. To derive

this ansatz, we first describe the Z2A 2213 spin liquid by starting from the familiar staggered

flux phase with U(1) gauge symmetry [3], and perturbing it with d,, pairing. Explicitly, the
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ansatz is

_ te=i 0
Ujj+5 = o | iz + 1y even
0 —te’
o~ tel¢ O . .
Ui 473 — “ ,  lg + 1y odd
0 —te”
_ e’ 0 o
Uj i+ = . “ , g 1y even
te™
~ _te_Z(b 0 . .
Uity = . s , 1y + 1y odd
e
_ 0 —(11 —72)
Ui i+a+y =
—(n +iv2) 0
_ 0 (M —iv2)
Uii—+y = : (2.8)
(71 +i2) 0

The first four terms in (2.8) represent the fermion hopping, which is sketched in Fig. 2.3, and
the last 2 terms are the d;, pairing. With this ansatz, three distinct spin liquids may be
described depending on the choice of parameters. These spin liquids are shown in Fig. 2.2,

and we list them below:

o The 7m-flux phase with SU(2) gauge symmetry corresponds to ¢ = 7/4, and no fermion
pairing 12 = 0.
o The ‘staggered flux’ U(1) spin liquid is obtained for general ¢, and no fermion pairing

71,2 = 0. The U(1) gauge field corresponds to a nearly spatially uniform modulation in

the phases of the fermion hopping terms.

o The Z2Az213 spin liquid is obtained when the d, pairing 1 4772 is present, and breaks
the U(1) down to Zs.

Note that we have d;, pairing in the Zs spin liquid only, with opposite signs on the two

sublattices.
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In momentum space, we choose the A and B checkerboard sublattices as the basis sites
T
(shown in Fig. 2.3), and the Hamiltonian acting on (fAykT’fB7kT’fIx,—k,yf;,—k,¢) in the
gauge of Eq. (2.8) is
0 Cp Dg 0
cy 0 0 Dy,
H=| " (2.9)
Dy 0 0 —Ci
0 D, —Cp O

where
Cr = —2t(e7 " cos(ky) — e cos(ky)) , Dg =4(y1 —ive)sin(k,)sin(ky). (2.10)

The eigenvalues of (2.9) are

e = % (IRe(Ca)P? + Im(Cy) % D4 [2) (2.11)

and these co-incide with those obtained in Wen’s gauge in (6.23). Note that the dispersion
depends only on |y; + 72|, and not on 7, 2 separately. This is natural in the staggered flux
gauge, where U(1) the gauge transformation acts simply as f;o — fia€'®*, and so the dyy
pairing acts like a charge 2 Higgs field: a simple identification of the charge 2 Higgs field is
the advantage of the present gauge. This dispersion is plotted in Fig. (2.4). The staggered
flux phase has Dirac nodal points at (+7/2,+7/2). Introducing d,, pairing does not gap
these nodal points, but moves them away from these high symmetry points. Although the
dispersion does not have full square lattice symmetry, all gauge-invariant observables do, and

this is verified by the analysis in Appendix A.1.

2.2.1 MAJORANA GAUGE

For the remainder of the analysis in the body of the paper we map (2.8) onto the gauge used
by Wang et al. [500] for the m-flux phase, which is convenient for eventual representation

in Majorana fermions and making the gauge and spin rotation symmetries manifest. In this
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Figure 2.4: Plot of the dispersion, ek, of the fermionic spinons of the Zs spin liquid Z2Az213.
The eigenvalues of the spinon Hamiltonian are +e. All gauge invariant observables are
invariant under the square lattice space group, although the spinon dispersion is not. The
plot is of Eq. (2.11) for t = 1.118, ¢ = 0.464, v; = 0.5, 2 = 0.

gauge, the ansatz of the Z2Azz13 spin liquid (which is gauge equivalent to Eq. (2.8)) is

ite~ 419 0 ) )
Uiirz = ' , iy + iy even
0 iteti?
ite*® 0 o
Us i1 = . , iz +iy odd
0 ite 4i¢
) te2i¢ 0
Uiirg = (=1) ‘ , iy +i, odd
0 —te~ 2o
_ . —te”%% 0 , .
Upirg = (—1) ' , iz +1iy even
0 te2i®
_ _ 0 (1 — iya)e 2@ o
Uiit+z+y — Yii—z+y — , , g+ 1y even
(71 + iy2)e®® 0
0 (=71 + i) et o
Ui itz+g = Uii—a+§ = . , lp 41y 0dd2.12)
(=71 — iy2)e ¢ 0
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As in the previous gauge, the mw-flux phase is obtained when ¢ = 7/4 while the staggered-flux

phase corresponds to general ¢.

2.3 CONTINUUM THEORY FOR HIGGS TRANSITION FROM SU(2) TO Z;.

2.3.1 7-FLUX STATE WITH SO(5) SYMMETRY

We begin by working out the continuum SU(2) gauge theory with the 2-flavor massless Dirac
fermion from the mean-field ansatz for the w-flux phase, using the Majorana gauge given in
Eq. (2.12).

In this gauge, we replace the Nambu spinor in Eq. (2.3) by the matrix operator

o —ff
x| T (213)
fiy fiT
The spinon SU(2) gauge symmetry of Eq. (2.7) now acts on X; as
SU2)g : X — XU ;. (2.14)
The physical spin symmetry acts on X; on the left:
SU(?)S : Xi — Uin. (2.15)
We write the Bogoliubov Hamiltonian Eq. (2.4) as
HMF = Z [iaij Tr (XiTXj) + 5% Tr (UaXiTXj) + i’}/ij Tr (O’aXiTUan)} . (2.16)
(i5)
The correspondence with the notation in Eq. (2.4) is
ugj = i T + BT (2.17)

The additional v;; hoppings involve projective realizations of the spin rotation symmetry, and

will not be relevant. The degrees of freedom in this Hamiltonian can be represented by four
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Majorana fermions,

1
Xi = —= (x0 +ixa0?). 2.18

The SU(2)-invariant 7-flux state comes from the hoppings 5* = 0 and

Qi = =i Oz =20 aypg, = (—1)"2t. (2.19)

The low-energy behavior of this mean-field ansatz is described by an SU(2) gauge theory with
an emergent SO(5) symmetry. To work out the dispersion relation of this Hamiltonian, we
increase our unit cell by one lattice site in the x direction and so x acquires an additional
sublattice index m = A, B. Note that this unit cell differs slightly from the one used in the

staggered flux gauge. In momentum space, we then have

H =" xTH(k)xx,
p (2.20)

H(k) = =2t [sin(ky)p® + sin(k;)p"] .

p' are Pauli operators acting on the sublattice space, m = A, B. This Hamiltonian is diagonal
in the 0,a indices in Eq. (2.18), and the gauge was chosen to have this feature. The Hamil-
tonian in Eq. (2.20) has Dirac points at k, = 0,7, k, = 0. Labelling these Dirac points by
another index v = 1, 2, and expanding around these two points, we decompose our Majorana

operator as

Xmyi ™ p:BXm,v:l (l') + (—1)iyxmﬂ}:2(x) . (221)

With this, the Hamiltonian reduces to

H~2it Y xp (070: — p°0y) Xo (2.22)
v=1,2

with the sublattice and 0, a indices implicit. This gives the continuum Lagrangian
Lyr = 2ityvfy“6uxv (2.23)
where 70 = p¥, 4% = ip?, 7Y = ip®, and ¥ = x77°. Here we have chosen to express £/r in the
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Minkowski metric (+, —, —); we ultimately move to the Euclidean metric below to perform
calculations.

We now define the 4 x 2 matrix operator

1 .
Xowp = 75 (X0,0008 + iXa,v053) (2.24)

and X = X740, where the sublattice/Dirac index m is left implicit. This lets us write our
Lagrangian as

Ly =iTr (X+"0,X) , (2.25)

where we set ¢ = 1/2 from now on. In this form, the Hamiltonian describes 8 massless
Majorana fermions (these are 2-component ‘relativistic’ Majorana fermions with an additional
sublattice index). The SU(2) gauge symmetry acts on the right index (§ in Eq. (2.24)) of
X, and the gradient in Lj;r must be replaced by the appropriate covariant gradient when
the gauge field is included. Global spin rotations act of the left index (v in Eq. (2.24)) of
X, and global valley rotations act of the v index. These global rotations combine to yield an
emergent, low energy Sp(4)/Zs = SO(5) global symmetry in the 7-flux phase [384, 500].

In the following subsections, we derive the continuum form of the perturbations given in
Eq. (2.12), which break the 7-flux state down to either the staggered flux state or the Z2Az213
spin liquid. We do so by rewriting these perturbations in terms of the low-energy modes
given in Eq. (2.21) and keeping only the lowest order gradient terms. These perturbations are
coupled to adjoint Higgs fields, and the transition of the m-flux state to either the staggered
flux state or Z2A 2213 spin liquid is obtained by condensing the corresponding Higgs fields. An
alternative derivation of these continuum perturbations based on symmetry fractionalization

is provided in Appendix A.1, and agrees with the following analysis.

2.3.2 FROM 7-FLUX TO STAGGERED FLUX

We obtain the continuum version of the perturbations to the staggered flux phase by expanding
the mean field parameters u;; defined in Eq. (2.12) in powers of ¢ = 7/440¢. We subsequently

employ Eq. (2.17), which in turn yields additional hopping parameters to the Hamiltonian of
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Figure 2.5: Shown are the leading-order perturbations that away from the SU(2) 7-flux state,
in the Majorana gauge given by Eq. 2.12. Note that the unit cell, with sublattice sites A
and B, differs from the gauge illustrated in Fig. 2.3. (Left) The perturbation that shifts the
m-flux state to the staggered flux state, whit hoppings proportional to 7%. Thickness of the
line denotes strength (weaker in the y-direction) and solid/dashed indicates positive/negative
sign. (Right) The d;, pairing that breaks the U(1) gauge symmetry to Zo, with pairing
Y17Y — v27 on solid lines and y17% 4 v27Y on dashed lines.

the form

S ivs = —A0p(—1) T, Firg = 200(—1)". (2.26)
These terms are illustrated in Fig. 2.5. If we look at the components of the Majorana fermions
(as defined in Eq. (2.18), with (0,a), a = z,y,2), we see that these new terms introduce
hopping between the 0 <+ z and = <> y Majorana fermions. For simplicity, we focus on the
0 <> 2z hoppings, as the x <> y hoppings will be identical. We start with the hoppings in the
x-direction, expand our Majorana operators in terms of low-energy modes, and keep only the

lowest-order gradient terms. As in Eq. (2.24), the two indices on x correspond to (0,z,y, z)
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and valley, respectively, with the sublattice index implicit.

o= _45¢Z [Xal(xi)px + (1) XOTQ(:E")} (—1)" p* [pxXz,l(xi) + (1) xz(ws)
+280 3 [Fateo + (-1 ale)] (-1 (7 = i)

X [P X (@ism) + (-1 e 2(wi15)]

+ 25¢Z [Xal(xi)pm +(=1)" x?jg(azi)} (=1)" (p° + ip¥) (2.27)

< [ (@iz) + (1) Xaalwia)]
~ 206 / A2 [x§ 1970 X2 — X0.20° 02 X211

= 0L = —2i6¢ Tr (0" X !0, X))

In our final term, we have reintroduced the = <> y hoppings. For the hoppings in the y-
direction,

5H =256 3, [xEa(@)o” + (~D¥ xa(e0)]| (C0" [0 (i) — (F1) xoa(rirg)]

(2

=256 [xa(a)o” + (~1)" xa(a0)] (-7 [p" X (@ing) = (~1) xea(aig)]

~ —256 / &z [x§1"9yxz2 = X6 20" OyX2,1]
= 0L = —2i0¢pTr (UZYuyyxayX)
(2.28)
Note that here and in Eq. (2.27) the Pauli matrix o7 is acted on by the SU(2) gauge symmetry
of the m-flux phase. Gauge invariance requires there exist nearly identical continuum model
bilinears containing instead ¢® and oY Pauli matrices. It is therefore useful to express the
perturbation in a gauge independent fashion using an adjoint Higgs field ®§, where a = z,y, 2

is a SU(2) gauge index:

0L = O Tr [0"X ¥ (Y40, +~"i0y) X] . (2:29)
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(Our choice of subscript “3” will be clear shortly.) This Higgs field mediates the onset of the

staggered flux phase, and in this present gauge we have the identification
D5 ~ §¢. (2.30)

Condensing the Higgs field with (®%) leads to a transition from the SU(2) 7-flux state to
the U(1) staggered flux state. For concreteness, we continue to work in the gauge where ®§

condenses in the z direction, as implied by Eqgs. (2.27) and (2.28).

2.3.3 FROM m-FLUX TO Z2A2213

We now evaluate the effects of a non-zero ~; 2 in the m-flux phase, using the Majorana gauge

as given in Eq. (2.12). We first consider turning on the perturbation

Ui ira1g = Uig—a+g = NT —YT", iz + iy even. (2.31)

Recall that in the Majorana basis, terms proportional to 7% (7Y¥) correspond to hoppings
between the 0 <> z(y) and z +» y(x) Majorana fermions. Focusing on the v; term, we expand
in low-energy modes

SH =7 ) [xga(i)p” + (-0 xdaen)] [* + (-1 o]

K
x [PmeJ(JUz’—i-éH—z?) = (1" xy (xi+i+§)]

R Y X0 (@) P Xy () = X002 () p Xy 2 (w4) (2.32)

A
T z T z
+ X0.1 (i) P xy,2(%i) + X0.2(T3) P Xy, 1 (74)

= 0L =y Tr [0YX (47" + pY) X |

The perturbation is identical for the v term, but with ¢¥ = —o”.
As in the previous section, the addition of the hopping parameters of Eq. (2.31) can be

formulated in a gauge-invariant fashion by coupling the bilinear above to an adjoint Higgs
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field ¢t a=u1,y,z2 (the bar on the “1” will be apparent below). In particular, when the term
o7 Tr (0" X (*y" + p*Y) X] (2.33)

is added to the Lagrangian, we reproduce the continuum version of Eq. (2.31) we just derived
when ®F condenses as

(D) ~72 (@)~ (2.34)

We perform the same analysis for the second term proportional to 71 2:

Ui ita+y = Uii—a+g = NT T 7277, iz +iy odd. (2.35)

The continuum derivation of this is essentially identical to as before, yielding

5L =Tr [(’ylax +720Y) X (1*y" — p*yY) X] , (2.36)

prompting use to introduce o3 Tr [U“Y (" —,ux'yy)X]. The continuum version of

Eq. (2.31) is obtained through the condensation ®5 such that (®) = v1daz + V20ay-

2.3.4 MAJORANA-HIGGS LAGRANGIAN

We now combine the results of Sections 2.3.1, 2.3.2, and 2.3.3 to obtain the low energy
Lagrangian for the Majorana field X, and 3 real, adjoint Higgs scalars, which we now identify
as ®f, @3, ®§ (®f, are rotations of P75 in the 1,2 plane). We do not explicitly write out
the coupling to the SU(2) gauge field in this subsection, which can be included by the usual
requirements of minimal coupling.
The Lagrangian is
L=iTr (X+"0,X) + 0 Tr (0" Xp*v"X) + 05 Tr (0" X " X))

(2.37)
+ 0§ Tr (6 X ¥ (1910, + 7"i0y) X) + V(®).

The staggered flux state is obtained when (®3) o (0,0,¢). The Z2Azz13 state follows from

(@1) oc (71 —2,71 +92,0) and (Pa) oc (=1 — 72,71 — 72, 0).
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The Higgs potential V(®) arises from integrating out the high energy spinon degrees of
freedom. We deduce its form by carefully considering the symmetry properties of the theory,
which are described in some detail in Appendix A.1. Here, we note that the theory should

respect time reversal and the lattice symmetries,

Ty : (igyiy) — (i +1,1y), Ty : (ig,ty) = (ig, iy + 1),
Pyt (igyiy) = (—ig,iy), Pyt (inyiy) & (g, —iy),
R7r/2 : (Zxaly) — (_iyzix)7 (238)

and we summarize the transformations of the Higgs fieds here:

T | Ty | Po| By | T | Repo

S| R Y R . 3
oL+ | = | = | = || -2
o | — | = |+ |+ |+]| -

From this, we can deduce that the following gauge-invariant terms are allowed to quartic order

in the Higgs potential

V(®) = 5(7D] + D5DG) + 3 PIDT + w egpe PIDLDE
+u(BIRF + BYRG)” + 1 (B50)” + vy (B10)” + vz (B105) (@5))

+ g [(O109)° + (0509)°] + v (2507 + B504) (@42} . (2.39)

where €, is the antisymmetric unit tensor.

An important feature of V' (®) is the cubic term proportional to w. This term implies that
if any two of the Higgs fields are condensed, then so must the third. It also shows that even
if we were only considering the transition from the SU(2) m-flux phase to the gapless Zs spin
liquid by the condensation of @7 ,, we would be forced to include ®§ in our theory, and hence
the additional possibility of a U(1) staggered flux phase. The symmetry transformations show
that ®§ is the unique adjoint Higgs field that can be made from the tensor product of the
Higgs fields needed to describe the gapless Zg spin liquid, ®§ and ®45: so the staggered flux

phase is a natural partner of this gapless Zs spin liquid and the w-flux phase.
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We can perform a mean-field minimization of Eq. (2.39), and typical results are shown in
Fig. 2.2. There are 3 phases as a function of the tuning parameters s and s, which correspond
to exactly those obtained in the lattice mean-field theory described in Section 2.2. The
presence of the w term implies that there is a first order transition line near the point where
the 3 phases meet [414], as shown in Fig. 2.2. We summarize and re-express the lattice theory

results in terms of the continuum model parameters below.

SU(2) m FLUX PHASE

Here, there is no Higgs condensate (®f ,) = 0, (®3) = 0, and the system lies in the red region
on the top right of Fig. 2.2: the SU(2) m-flux phase. The continuum model possesses an
SU(2) gauge symmetry, along with the corresponding gauge bosons. The theory is believed
to confine to the Néel or VBS phase—as discussed in Section 2.1 and 2.8, we view the Néel

phase to be more likely.

U(1) STAGGERED FLUX PHASE

This state as (®§) non-zero, while (®¢,) = 0, resulting in the U(1) staggered flux phase

represented on the top left of Fig. 2.2. Making contact with the lattice ansatz, we have

(®4) x (0,0, —7/4) #0. (2.40)

Again, the theory has a continuous unbroken gauge degree of freedom, now with only a U(1)
symmetry. There is a single gauge boson, which we nevertheless assume triggers confinement.
As argued, the most likely fate of the theory is the VBS state, but we cannot preclude the

Néel phase.

Zo SPIN LIQUID Z2Azz13

The Zs spin liquid Z2Azz13 corresponds to a Higgs condensate satisfying ( ‘f2> # 0; it is
shown in the lower half of the phase diagram of Fig. 2.2. The symmetry transformations
imply that ®¢ and ®§ have the same mass, so only a single tuning parameter, s, is required

to make them condense from the SU(2) m-flux phase. From the symmetry transformations,
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we also see that the absence of a broken symmetry requires that the gauge-invariant bilinears
obey
(P70Y) = (©303) >0, , (P7P3) =0. (2.41)

Such saddle points are obtained from the Higgs potential for a range of v; positive and vy
negative. Moreover, such a saddle point is indeed present in the lattice ansatz of the previous

section where

(Pra) o< (=71 — 72,71 —72,0) ,  (Paq) o (71 — 2,71 + 72,0). (2.42)

We note that this implies (®1) L (®2) and |[(®1)| = [(P2)|, where we use a vector shorthand
for the indices a = z,y, z of the Higgs fields. By minimizing the potential V' (®) in Eq. (2.39),

we see that this Zo spin liquid also implies the condensation of the remaining Higgs field:

(@§) o< weae (1) (D5) (2.43)

It follows that s can change sign within this phase without any phase transition.

2.3.5 VISONS

The Zo spin liquid is obtained from the theory in Eq. (2.37) + SU(2) gauge fields (which is
Eq. (2.45) below) by condensing ®{ ,. This spin liquid has gapless fermionic spinon excitations,
whose low energy dispersion can also be determined from the continuum theory. However, as in
all Zo spin liquids, there must also be vison excitations, which are mutual semions with respect
to the spinons. In the theory in Eq. (2.45), the vison is a finite energy excitation associated
with vortex-like saddle point in which the Higgs fields ®{ , undergo a topologically non-trivial
SO(3) rotation, associated with 71 (SO(3))= Zg, around the core of the vortex: see Ref. [418]
for an explicit solution in a theory without the fermionic spinons. Given that the vison
appears in a lattice model with a background spinon density of one spinon per site, we expect
the vison transforms projectively under translational symmetries with 1,7, = —T,T,, where
T, is translation by one lattice spacing in the a direction [197, 217, 411, 419, 435]. For the

case of gapped spinons, this fact now has a modern interpretation in the theory of symmetry
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fractionalization in topological phases [46, 80, 127, 315, 555]. We expect that a similar result
applies in the present gapless spinon case, but this has not been explicitly established. For
the case of gapped spinons, the vison projective transformation can be derived from a parent
U(1) gauge theory (which is Higgsed down to Zsg) in which the monopoles carry Berry phases
[217, 411, 419]. Such monopole Berry phases are in-turn related to a SO(5) Wess-Zumino-
Witten term in an effective theory the Néel and VBS order parameters [436, 477]. Notably,
this SO(5) WZW term is also linked to an anomaly of the Majorana theory in Eq. (2.45)
[500]. It would therefore be interesting to establish T, T, = —T, T, for gapped visons in the
presence of gapless spinons starting directly from Eq. (2.45) and condensing the Higgs fields:

we leave such an analysis for future work.

2.4 RENORMALIZED PERTURBATION EXPANSION FOR THE CRITICAL SU(2) GAUGE

THEORY

This section will present an analysis of the transition obtained by tuning the Higgs ‘mass’ s
in Eq. (2.39) across a quantum critical point at s = s., for § > 0 in Fig. 2.2, between the
SU(2) and Zy spin liquids. We have (®{,3) = 0 for s > s, yielding the m-flux spin liquid.
For s < s, we have (®{,) # 0 yielding the Zy spin liquid Z2A2213. As we noted below
Eq. (2.42), (®§) will also be non-zero once both (®{,) are non-zero. However, as (®§) is
quadratic in (®f 5) (see Eq. (2.43)), it is not a primary order parameter for the transition. So
we can entirely neglect ®§ in the analysis of the criticality in the present section.

It is also convenient to write the theory in terms of 2 flavors of complex Dirac fermions
which also carry a fundamental SU(2) gauge charge, 1, ,; Here a is the SU(2) gauge index,
v = 1,2 is the valley index, and the Dirac/sublattice index is suppressed. The global SU(2)
spin symmetry is not manifest in this formalism, unlike in the earlier Majorana formalism.
Since the Lagrangian in Eq. 2.37 does not contain terms that act on the physical SU(2) spin,
our Lagrangian nevertheless has a simple form in terms of these Dirac fermions, although a
more careful analysis will be required to calculate the behavior of the Néel order parameter,

which does involve the physical SU(2) spin. Explicitly, the relationship between the Dirac
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and Majorana fermions is

Yaw = i0Y 5 X105 (2.44)

Applying this change of variables to Eq. (2.37), and including the SU(2) gauge field Aj, we

obtain the Lagrangian for ¢ and the @7, Higgs fields

L= Ew + Lo + ﬁ@/,
Ly=1Y " 0y —iA%0") by

L K
= 5|00 — 2eancALDE)? + (9,05 — 2eanc AL 05)?] + 2 (2405 + 0505)  (245)
f

+u (0] + 0505)° + vy (P105)” + v, (2797) (2hh)

Loy = X (P Py 0% + B§ pu+Yoy)

We will henceforth work in Euclidean signature, with (7“)2 = 1 for all u. This Lagrangian
includes an important new term not present in Eq. (2.37): a bare spatial gradient term for the
Higgs field proportional to the coupling K (we will define Ny shortly). This coupling is allowed
by symmetry, and will turn out to be ‘dangerously irrelevant’ i.e. under renormalization, K
flows to zero, but it cannot be set to zero at the outset because of some singular effects that
we will describe below. In contrast, the quartic couplings u, vq2 are geniunely irrelevant at
the critical point, and will not be considered further.

The theory L is invariant under SU(2) gauge, SU(2) spin rotation, time-reversal, and space
group transformations, as it must be, because these are symmetries of the underlying Hamilto-
nian and its parton representation. However, the Yukawa coupling A breaks both the emergent
Lorentz and SO(5) symmetries of the fermion kinetic term. As we will show below, A is not
an irrelevant perturbation, and so the absence of these emergent symmetries will be apparent
in the critical correlation functions.

We will analyze the critical properties of Eq. (2.45) by the 1/N; expansion used in earlier
treatments of Dirac fermions coupled to scalar fields by Yukawa couplings which break rel-
ativistic invariance [199]. For this purpose, we will endow the fermions with an additional
flavor index (not shown explicitly) which ranges over Ny values. Combined with the v index,

there are a total of 2Ny flavors and 2 colors of 2-component Dirac fermions. The physical
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case of interest to us is Ny = 1.

As in Ref. [199], we will compute the renormalization constants of the theory £ in a 1/Ny
expansion. The most important of these will be the renormalization of the Fermi velocity,
which has been implicitly set to unity above: this is non-zero because of the lack of the Lorentz
invariance in the Yukawa coupling. The renormalization of the Fermi velocity in turn defines
a dynamic critical exponent z: we will compute z to order 1/Ny and find it to be a universal
number at this order. Next, we shall examine the renormalization of the field scales. As in the
Ref. [199], a convenient choice, as we explain below, is to renormalize the boson field scale ® so
that the Yukawa coupling A = 1; we will assume A = 1 below. As usual, the renormalization
of the fermion field, Z,, is determined from the fermion self energy, which then determines
a fermion anomalous dimension 7,. Here we will find an unusual phenomenon, which is
one of our main results: the value of 7, is not universal at order 1/Ny, but has a logarithmic
dependence upon the irrelevant coupling K. Finally, we will also compute the renormalization
of the fermion bilinears associated with the Néel and VBS order parameters: these are not

equal to each other because the SO(5) symmetry is explicitly broken.

2.4.1 BOSON PROPAGATORS

The first step in the large Ny expansion is to integrate out the large number of fermions 1,
which allows us to determine the propagators of the bosons: the Higgs fields and the gauge
fields. To leading order in 1/Ny, we have to evaluate the diagrams in Fig. 2.6, and this leads

to an effective quadratic action of the following form

ff‘; = /k %(3 + KE2 +T1(k))® (k) (—k) + %(s + Kk, + Dy (k) ®5 (k) D3 (—k)
+ T (5, - B0 ) apmaz(-n).

We work in the Euclidean time signature, and k is a 3-momentum.

We first calculate the one-loop corrections to the Higgs propagators. The correction to the

56



Chapter 2. Deconfined criticality and a gapless Zo spin liquid in the square lattice
antiferromagnet

k+p k+p

Figure 2.6: The leading order effective propagators for the Higgs (left) and gauge field (right)
are generated by the one-loop contributions from N fermions.

®; propagator is shown in the first diagram in Fig. 2.6, and is

Ty (k)0ap = A* Tr / (;1;?;3 [w*y*of [Z;] [“Z’Vx"b} {(Zﬁf)?}

82 b/ (d31)73 po(po + ko) — pzz(éox + 143:2) + py(py + ky)
“ 27 p*(k+p

A28, (kg + k)

R

(2.46)

We have omitted a constant term, which will be tuned to zero at the critical point.
The correction to the ®5 propagator is identical to the ®; correction, with k; < k.
N (k3 + K2)

Pa(k) = 0 (2.47)

The reader should now notice some key features. As in Ref. [199], the overall scaling in
momentum is I'y o ~ |k|. So, this fermion-induced contribution to the ® propagators is more
important at low momenta than the k? terms which would be present in the bare theory. In
general, the bare boson k? terms are irrelevant, and this is why we choose to set the field
scale of ® with the renormalization condition A = 1. However, unlike Ref. [199], we will see
below in some detail that we cannot entirely ignore the bare k% term. The expression for
I'y (I'2) is not an increasing function of k, (k,) when it is larger than the other momentum
components, and this will lead to infrared singularities at first order in 1/Ny. Specifically,
the integral over the propagator 1/I'y (1/I'2) has an infrared divergence in the ko,ky (ko,kz)
plane. Consequently, we do need to include the dangerously irrelevant Kk2 (K kg) term in the

bare action for ®§ (®4), as we have anticipated in Eqs. (2.45) and (2.46).
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k///—\\\ km
p)—— ) ) —> > T

Figure 2.7: The two leading order contributions to the fermion self-energy, arising from Higgs
(left) and gauge boson (right) couplings. To leading order in 1/N¢, both the Higgs and gauge
boson propagators are generated by the fermions.

The O(Ny) propagator for the gauge field is obtained from

oo [ 5[ 3] 25

(k616" — kFEY) + O(K?) .

N (2.48)

N

This is relativistically invariant, as expected.

2.4.2 FERMION SELF-ENERGY

We first calculate the one-loop corrections to the fermion self-energy, which will determine
the anomalous dimension of the fermion operators as well as the dynamical critical exponent
z. Although the anomalous dimension of the fermion is not a gauge-invariant observable, it
will be needed to calculate the critical behavior of the gauge-invariant SO(5) order parameter.
The three contributions to the fermion self-energy, as shown in Fig. 2.7, come from the two

Higgs bosons and the gauge field, ¥ = 31 4+ Yo + 4.

3 dSBp L[ p+E T, 1

Ei(k) = Nf/ o) ornil T T T K2 (2.49)
3 dBp [ p+E T 1

200 = 5 [ G e Tl K2 (2:50)
3 By [ k] - (1-OBE

0 = 3 e e e (251)

We have introduced £ as a gauge-fixing parameter to obtain the gauge boson propagator.
Focusing on the Higgs corrections (Egs. (2.49) and (2.50)), we analyze the behavior at small

external momenta k;. Note that the self-energy integrals are fully regulated by the presence of

K and a non-zero external momenta. Since ¥ (X2) is invariant under ky <> ko (kz < ko), and

the two transform into each other under a 90 degree spatial rotation, there are two distinct
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types of contributions for small external momenta. The first is proportional to k,v* for ¥y,

and kyvY for Ys. The second type includes all other possible choices of momenta, such as

ko’yo.

As we shall justify below and in Appendix A.2, we can focus on the regime |p;| > |pol, |py|

for graphs with a ®; propagator. In this limit, we can approximate the ®; propagator as

4’171’
P + P2+ 4K |p,

5 (2.52)

At K = 0, this propagator has an infrared divergence when integrated over the pg, plane - so
K is needed an infrared regulator. With this, we extract the v* correction to the self-energy

from the ®; propagator by considering the kg = k, = 0 limit:

7121 (kx)

12 /A (d3p (pa + ka) I (2.53)

TNy 27?)3(Px+/€x)2+P3+P§p3+p§+4Klpx\3.
We have indicated a cutoff A to regulate the theory at large momenta, and this is needed in
conformal gauge theories in 2+1 dimensions. However, with our inclusion of the irrelevant K
to control the infrared singularity, we find that the integrand vanishes faster at large momenta.
It is not difficult to see that for K # 0 Eq. (2.53) is finite as A — oo, and we will take this
limit in the present section. The theory with a finite A will be examined in Appendix A.2 in
a renormalization group computation.

We will now show that Eq. (2.53) has a leading k,In?(k,) contribution. One factor of
In(k;) is the usual one: it follows from the fact that at K = 0 the integrand divided by k,
is a homogeneous function of momenta of dimension —3. The other comes from the infrared
divergence regulated by K noted below Eq. (2.52).

Extracting the coefficient of the k, In?(k,) contribution requires a number of approxima-
tions. To understand the values of p that dominate the integral in Eq. (2.53), it is useful to

perform the integral over pg and p,:

() = 2 / dps [pe|(Pa + k) I0[(pa + Fr)?/ (4K |pal*)] (2.54)

- Ny J 82 (Pe + ka)? — AK |ps |’

By examining the form of the integrals in Eqgs. (2.53) and (2.54), one can verify that the dom-
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inant term at small k, and K is proportional to k, In? (Kk,), and arises from the integration
regime

1/2 1
{K\pzl?’} < [+ < Ipel < e (2.55)

The scale K appears both as an ultraviolet cutoff and in defining the infrared bound. For
future calculations, this integration regime will prove to be the relevant one in isolating sim-
ilar log? contributions in other diagrams, although in principle one must still carry out an
explicit calculation like in Eq. (2.54) to verify that no other integration regimes give compa-
rable contributions. We provide these calculations in Appendix A.3 in addition to numerical
evaluations of the one-loop integrals which confirm the validity of our approximations, and
simply evaluate the one-loop integrals in the Eq. (2.55) limit in the main text.

We can extract the coefficient of this log? term by performing the integral in this regime,

v (ky) =

H/I/dem 1Pl /pw dp,dpy 1
(

Nf 1K 27 (pz—l—kx) K|pa|3)1/2 472 p%—l—pg
12 /VK dp:  |pe| 1
N — —_— 1/(K|ps (2.56)
Ny 1/K 277(1%—1—]@) In(1/(K|pzl))
12 k, 9
———— [In(Kk,

Another discussion of the origin of the k, In?(k,) is presented in Appendix A.2 using a renor-
malization group analysis.
We now calculate the form of the second type of corrections using the limits in Eq. (2.55),

evaluating the ®; contribution to the self-energy with external momentum kg for concreteness.

12k [YE dp, 1 [lP=l dp.. d 1
ITORES S - g
f 1/K 4T ‘px’ K\px 3y1/2 (2m) P+ p? -
12k [V dps 1 12k
Nf /1/K ot \p$]4 n (1/(K|pz|)) =~ N8 ~— [In( 0)]?

Combining the corrections from both Higgs propagators, we obtain the full expression for the

self-energy for small external momenta at log? order,

Y(k) ~ — (ko In? (K ko )y + ky In® (K ky)v" + ky In? (K, )7Y] (2.58)

2Ny

60



Chapter 2. Deconfined criticality and a gapless Zo spin liquid in the square lattice
antiferromagnet

In principle, the dependence on external momenta inside the logarithms could be more com-
plicated for general k, i.e. (k)7 ~ koln?(K f(ko, ke, ky)), but since we have verified that
f(ko,0,0) = ko, then corrections to this are subleading.

These divergent corrections are absorbed into the renormalization of the fermion field,

¥ = \/Zytbr, with

Zy=1- In?(Kpu), (2.59)

2Ny
where we have renormalized the theory at some momentum scale u. This counterterm only
cures the divergence at log? order, since the renormalized self-energy at some other momentum

scale k will scale as

In?(Kp) — In*(Kk) = In(p/k) In(K?kp) . (2.60)

This, along with the RG analysis in Appendix A.2, indicates that the subleading single-
logarithm corrections will generically give non-universal behavior. However, these log? cor-
rections to the self-energy are Lorentz invariant, and do not affect the renormalization of the
dynamical critical exponent, z. Therefore, the subleading single-logarithm correction to the
velocity anistropy will lead to a universal correction to the dynamical critical exponent. To
extract the subleading correction to z using K and the external momenta as a regulator, we

start with the expression

oy, 0% , 12/ dp 2(py + ky)? Ip| (2.61)

ok Ok, Ny @nP (p+ k)t AKppl+ P2+ 2

To leading order in k, we set kK = 0 inside the integrand and simply use it as an IR cutoff,

which gives
ox o, 0% 6
—7y - "= In(Kk). .
ok | Ok, Nya? n(Kk) (2.62)

This result can be obtained analytically by approximating the integration region k < |p,| <
1/K, and can be verified by a numerical evaluation of Eq. 2.61. This implies a renormalization

of the Fermi velocity, vp = Z,vp R

6
Zy=14 ——In(K 2.
+ oy, () (2.63)
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The logarithmic derivative with respect to 1/K determines the renormalization of the dynam-
ical critical exponent,
6

=14 ——. 2.64
z +7r2Nf (2.64)

The one-loop calculation defined in Eq. (2.61) is actually well-defined when K = 0 and can
be regulated via more standard approaches, such as dimensional regularization, as shown in
Appendix A.4. The same value of z is also obtained in a renormalization group computation

in Appendix A.2.

2.4.3 SO(5) ORDER PARAMETER

In the absence of the Higgs fields, our theory possesses an emergent SO(5) symmetry cor-
responding to rotations between Néel and VBS order parameters. This SO(5) symmetry is
broken by the critical Higgs fields, and as a result, the scaling behavior of Néel and VBS
order parameters will differ. In terms of Dirac fermions, the fermion bilinears corresponding
to the two-component VBS order parameter - determined by the action of the square lattice

symmetries on the bilinears - may be written as

Vi=yliy, I'={u", u*}. (2.65)

The three-component Néel order parameter has a less concise expression in terms of Dirac
fermions - this is due to the fact that the Dirac fermion representation obfuscates the action
of the physical SU(2) spin rotation symmetry. In terms of the Majorana field X, the order
parameter is Tr (YuyaaX ), a==x,y,z In order to calculate corrections to the Néel order
parameter, we focus on the 0® component, which happens to be simply expressible in terms

of a Dirac fermion bilinear:

N? = pup . (2.66)

Because the Higgs couplings preserve the physical SU(2) spin rotation symmetry, the other
components must have the same corrections, and this has been confirmed by an explicit
calculation in terms of the Majorana fermions. To compute the corrections to the scaling

dimensions of these composite operators, we couple the fermion bilinear n* = ¥ u*y to a source
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V¥ ¥ (G

Figure 2.8: The O(N 7 1) vertex corrections which contribute to the renormalization of the
SO(5) order parameter. The order parameter receives corrections at one-loop order from
the Higgs fields (left) and the gauge boson (center), although only the former gives a log?
correction. An additional two-loop O(N 1) contribution (right) is possible - we show in

Appendix A.6 that it does not contain any log? divergences.

field J;, and compute the O(N 7 1) vertex corrections in Fig. 2.8. Aside from the corrections
coming from the renormalization of the fermion self-energy, the (’)(Nf_l) corrections that we
will be interested in come from one-loop corrections of the Higgs fields with external momenta

)

)

protptotyt [ &p , poK Pk 1

Ny /(27T)37 (p— k)2 (p—ka)2 | Ti(p) + Kp2
on.aﬂio.aﬂr d3p y p_]y/l p_]?é ’ 1

Ny /(277)37 (p— k)% (p—k2)? | Ta(p) + Kp3’

(2.67)
+

where the first and second terms arise from interactions with ®¢ and ®$, respectively. The
gauge field correction does not break SO(5) symmetry and does not contribute to the renor-
malization at log? order, so we will focus on the Higgs corrections. Additionally, there is
a possible two-loop diagram shown in Fig. 2.8 that contributes at (’)(N 7 1), but we show
explicitly in Appendix A.6 that these corrections also do not contribute to the renormaliza-
tion at log? order. At zero external momenta, the log? Higgs corrections to the VBS order
parameter (u' = p®, p?) drops out entirely, leaving only Higgs corrections coming from the
fermion renormalization.

We focus on vertex corrections to the Néel order parameter (u' = u¥). As is the case
in the fermion self-energy, the spatial anisotropy in the Higgs propagators gives rise to log?

divergences in their corrections to the SO(5) vertex. We isolate log? divergences in the Higgs

correction to the SO(5) order parameter by including an external momenta 2k, to the order
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parameter, which is distributed symmetrically between the two fermion fields. We calculate
this for the ®; propagator—approximating the Higgs propagator as 4|p.|/(p3 + pf/ +4K ]pm|3)

as in the previous section and taking the limit in Eq. (2.55), the one-loop correction is

wrotuYol u® / d3p Py — k2 "‘pgz; + P} 4|pa|
Ny (27)3 [(ps + k2)? + P2 + 18] [(Px — k2)? + P} + P3) 03 + p2 + 4K |p,|*
Ll / VE dpe  (n2 — KD)Ips| / el dpydpy 1 (2.68)
Ny Jo1yk 21 (pe +ke)?(pe — ka)? J (ka2 472 pg+ 02
2w (M dp, (0} k)bl U712
oy — tx z z In(1/(Klpg|)) =~ — In® (Kk,
Ny /1/K 82 (o + b pa — 2 P D) = o g o (Rke)

The &, propagator gives an identical correction. Since the external momenta only play the role

of an IR cutoff to leading order, we generalize this result to an arbitrary external momentum

and obtain the composite operator renormalizations [576]

Zvps = 1
(2.69)
In?(Kpu).

3
Zneel = 1+ Nf7T2

We can state these results in terms of the perturbative corrections to the two-point cor-
relator of the order parameters, (I (k)yI71)(—k)), i.e. the corresponding susceptibilities
xvBs and Xxneel; these combine the consequences of the composite operator renormalizations

in Eq. (2.69), and Z in Eq. (2.59), to yield

vomsth) ~ Ik () = 1 g wecin

7 2
e i .10
Y 2
, ~— = — 1— In“(K .
i)~ =l (2= ) = Ik 1= g 0 )
After a Fourier transform to real space, these correlators are
1 6
~—|1- In?(|r|/ K
wns(r) ~ 7 [ 1= g W01/
) 19 (2.71)
el (1) ~ — |1 — —— In?(|r|/K)| .
i)~ 7 |1 = g 5|

The renormalization group analysis in Appendix A.2 shows how the above results may be
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renormalized to large r; we find

(e

1 6
xvBs(r) ~ e &P N

(2.72)

1 12
XNéel () ~ W exp <_Nf7r2 ln2(|r/K)> )

where the exponents of the prefactors, a and b, are non-universal numbers.

Leading logarithm-squared corrections have appeared earlier in a few other problems in
quantum many-body theory. They appear in the theory of weakly disordered two-dimensional
metals with Coulomb interactions [11, 141, 271]. More recently, log? terms have also been
found in computations of the density of states of clean bilayer graphene with Coulomb in-
teractions [30, 337]. Renormalization group analyses of these cases [141, 337] also yield an
exponentiation similar to that in Eq. (2.72).

As an aside, we note that the one-loop vertex corrections to the bilinear 1), whose sym-
metry properties identify it as the scalar spin chirality [187], have the same magnitude and
opposite sign as the Néel order parameter. Because of this, the log? divergence is in fact
cancelled by the fermion self-energy. As shown in Appendix A.6, the two-loop corrections
coming from the Higgs fields vanish, meaning that correlations of the scalar spin chirality
should have power law decay at O(NJTI). Since this power law decay is slower than the Néel

and VBS correlations, this may indicate proximity to a chiral spin liquid.

2.5 TRANSITION FROM U(1) STAGGERED FLUX TO GAPLESS Zy SPIN LIQUID

This section discusses the critical U(1) gauge theory for the transition between the U(1)
staggered flux spin liquid and the gapless Zy spin liquid Z2Az213 in Fig. 2.2. A similar
theory has been considered earlier [437] for the Néel-Zo spin liquid transition.

Both phases have the Higgs field (®%) # 0. So let us fix ®§ = 6,,®, with ® a non-zero
constant, which will turn into a coupling constant in the low energy theory below. In this
situation, the SU(2) gauge symmetry is broken down to U(1), and we need only consider a

U(1) gauge theory with the U(1) gauge field A, = A7. Also important is the consequence of
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the w term in the Higgs potential Eq. (2.39):
V(@) =...+wd(®IDY — BYDT) + ... . (2.73)

Choosing a gauge with w ® < 0, and diagonalizing the quadratic form of the Higgs potential
for q)f:g, we deduce that we need only focus on a single low energy complex Higgs field near
the critical point

H = - (D] + P + (D] — 7)) . (2.74)

1
2
It can now be checked that H transforms as a charge 2 Higgs field under the unbroken U(1)
gauge symmetry. Other linear combinations of @fé’ can be ignored for the critical theory.

We can now obtain the critical theory for the fermions 1, the complex Higgs field H, and
the U(1) gauge field A, from Eq. (2.37):

Ly = Eq/, + Ly + ,qu,
Ly =i 0, " Dythy + @Yo (7 Dy + 7" Dy) 1)

§§:4HF+MHM

Loy = X (HY (1Py" +ipyY) o~ + 1 (WPy" —ip®y¥) o) .

(2.75)

We define the covariant derivative D, = 8, —iA4,0° and operators 0= = (6% £ io¥)/2. Note
that ® is a marginal coupling constant here, not a fluctuating field. A crucial feature of Ly
is that it does not contain the K gradient terms: these terms are now truly irrelevant. This

can be seen in the large Ny expansion: upon integrating the fermions, we obtain, in place of

Eq. (2.46),
Sp B (k) 4+ Tao(k) Ca(k) k. k.,
o [ (s PR ey A (5, - B ) aan. o

where I'1 o(k) are specified in Egs. (2.46, 2.47) for ® = 0. In general, the sum I'y (k) + I'z(k)
has the rotational symmetry of the square lattice, and its inverse does not contain the infrared
singularities we encountered earlier. Consequently, there is no logarithmic violation of scaling

by a dangerously irrelevant K here, and the 1/Ny expansion of L should proceed along more
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conventional lines.

The 1/Ny expansion of the theory L, was presented in Refs. [187, 387]: they found a stable
Lorentz invariant fixed point with ® = 0 at the fixed point. In our case, for Ly we expect
a critical theory with dynamic scaling with an exponent z # 1, SO(5) symmetry broken by
L34y, and a spatial anisotropy in the fermion velocities at the Dirac nodes determined by
the fixed point value of ®. Note that even for ® = 0 we do not expect Lorentz invariance
with 2 = 1, because the relevant Yukawa couplings in L3, are not Lorentz invariant, and
consequently I'1 (k) + I'2(k) is not Lorentz invariant.

In order to study our critical theory, we proceed in a 1/Ny expansion, with Ny the fermion
number. Since our theory only makes sense when the number of fermions NV is a multiple of
4, we define 4Ny = N; in other words, we take Ny = 1 to correspond to our physical theory.
At leading order in 1/Ny, our effective bosonic action takes the form

Sh . 1
p@):LA[s+IXkﬂ?i(—kﬂi@ﬂ+—2ﬂmxkaA—kL&Ak) (2.77)

where the inverse propagators I', I are generated by the one-loop fermion diagrams shown in

p p
/_\ /\
H------\  F----- H* A AY
N NS
p+k p+k

Figure 2.9: The effective action for the Higgs boson (left) and U(1) gauge field (right) are
generated by the fermions at leading order in a 1/N; expansion.

Fig. 2.9. We have taken the bare Higgs mass to scale with Ny, although we will be interested
in the critical theory where we tune the Higgs mass to zero.

To calculate the effective propagators, we need the fermion propagator, which receives
corrections to its Lorentz-invariant value of 1/p due to a non-zero ®. This may be treated
perturbatively in ®, but the existence of a stable fixed point turns out to not be viewable

at leading order, so we instead proceed with a non-perturbative treatment of ®. We include
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further details of this calculation in Appendix A, and cite the results in the main text. Defining

the variables

kot = kg £ Bhy, hys =k, £ Oky, |ki = \/kg +R2, k2, (2.78)

the effective inverse Higgs propagator (obtained from the ®-dependent fermion propagator)
is

T(k) (2.79)

B 1 K2 4 kE 4 kg hy K2+ KE— 2y ky
 16Np(1 - 22) |t | || '

Likewise, we need the general form of the effective gauge boson propagator. The presence of
a non-zero ® modifies the gauge coupling, and hence non-Lorentz-invariant corrections arise
both from ®-dependent modifications to the fermion propagator as well as O(®) vertices. We
separate this calculation into three pieces. The first correction comes from using the O((IDO)

vertices, but with the full fermion propagator. This one-loop term contributes

k2 ko k
1) (1) — a _ Fpalva
1= 2 s ks (50— "5) - (280)

The second correction comes from using one O(®) vertex, which gives the contribution

aq)kzg kuakya
2 =180 = 3 s e ()
o= o2 o (2.81)
2 2 a a avra
H/(Ly)(k) = Hz(m)(k) - Z 8Nf(1 _ <I>2)|k: | <5WU - qu ) :
a=%+ a a

There is also an extra factor of 2 in Hg;),yy due to the two possible vertex orderings. Finally,

the third correction comes from using two O(®) vertices,

P2L2 2
3 (k) = a L
0= 2 SN = ( 2 ) |

a==+
P22 k2
1183 (k) = a 1 -t :
wh =2 v aem ) (282)
D2 kyok
IO k) =1 (k) = — Tatye
yx( ) xy( ) az:;t 8Nf(1—(p2)’ka’

We verify that the combined inverse propagator I, (k) = > ;93 H,(fl),(k) annihilates the
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vector (ko, ks, ky), as required by gauge invariance. Note that II,, requires a gauge fixing
term in order to be invertable. Followin Ref. [187], we add the following non-local gauge

fixing term to the Lagrangian
1

A KFEY A, . 2.83

All gauge-invariant observables have been checked to ensure they are independent of the choice

of &.

2.6 RENORMALIZATION GROUP ANALYSIS

We perform a renormalization group (RG) analysis of the O(1/Ny) effective theory. We are

interested in studying the behavior of this theory under the rescaling

k=ke™,
(2.84)
w=we*
We also define a rescaling of the fermion fields
Y(k,w) = (K, o)es 3+ | (2.85)

The Higgs and gauge fields must also be suitably rescaled, although the anomalous dimensions
of these fields will not be needed to calculate our observables of interest. In the absence of a
standard boson kinetic term at leading order in 1/Ny, we define the scaling of the boson field

by performing our RG such that the Yukawa coupling remains fixed under RG.

2.6.1 FERMION SELF-ENERGY

We first evaluate the O(1/Ny) contributions to the fermion self-energy, which come from both
gauge and Higgs one-loop diagrams. The self-energy is UV divergent and requires a UV cutoff
A. The logarithmic derivative of the fermion self-energy with respect to this cutoff takes the

general form

d
%mﬂ@=%%$+Q%ﬂﬂww%+@@ﬁﬂ@w+@f) (2.86)
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for constants Cp12. One must verify that only these terms are generated at one-loop order,
which we have done.

In order to calculate the constants C;, we will use the momentum-shell RG approach out-
lined in Ref. [199]. The regularized one-loop contribution to the self-energy schematically
takes the form

(k) = ]éf / (;17?;];;F(p +B)GPK <i22) K <(’“sz)2) (2.87)

where F' and G are homogeneous functions of the three-momenta, and K(y) serves as a
UV cutoff with the property that /C(0) = 1 and K(y) falls off rapidly for large y. In our
calculations, we take F' to be the fermion propagator, and G to be the boson propagator (either
Higgs or gauge), along with vertex coefficients. The fact that F' and G are homogeneous
functions allows us to remove the explicit dependence on K upon taking the logarithmic
derivative and integrating by parts. We refer to Appendix A.7 for an explicit derivation of

this, and state the result here - the logarithmic derivative of the self-energy takes the form

d kx [T T OF (D) -, ~
A—X(k) = d sin 6 d6 . 2.88
50 = gy [ ao [ snoan P G(m) (285)

where p = (cos @, sin 0 sin ¢, sin 6 cos ¢). The resulting integrals in Eq. (2.88) are fully conver-
gent and may be evaluated numerically, from which we can extract the coefficients Cp 1 2.
2.6.2 FIXED POINTS

The RG equations for the velocity anisotropy ® are

4o
7 = (). (2.89)

In the absence of the Higgs field, ® has a stable fixed point at & = 0. The gauge field
contribution to this equation has been calculated to leading order in ® [187], and we verify
agreement with this result.

The evaluation of Eq. (2.89) is plotted in Fig. 2.10. A stable fixed point is found at
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Figure 2.10: An evaluation of the RG flow of ®, showing a stable fixed point at ¢, = 0.46.

®. ~ 0.45765. At this point, the dynamical critical exponent z is given by

z:1—00+C’1:1+0fi5+(’)(1/N%). (2.90)
Recall that when we derived this critical U(1) — Zg theory as a component of a parent SU(2)
theory, we made a gauge choice such that w® < 0, where w is the coeflicient of the symmetry-
allowed cubic term, weqp.P¢P5PS. When (®4) = ®4,., we can diagonalize this term to yield
a mass, w®(H*H — M*M), where H is the combination of @91”:2 given in Eq. 2.74 and M
is a charge-2 Higgs field of a similar form but with z < y. If we assume w > 0, ® < 0,
then H will become massless first, but the fixed-point value of ® gives a negative mass to M,
leading to a first-order transition driven by the condensation of M. As a consequence, we
must fix our parent SU(2) theory to have w < 0 in order to yield a continuous transition. If
we had made a gauge choice such that w® > 0, then our theory would have been driven by
the condensation of M rather than #; this still leads to the gapless Zy spin liquid Z2Azz13,
and all gauge-invariant observables at the critical point remain the same, although the sign

of @, changes.

2.6.3 NEEL AND VBS ORDER PARAMETER CORRECTIONS

We now calculate the vertex corrections to the Néel and VBS order parameters. These order
parameters are given by fermion bilinears and can be identified based on the action of the

microscopic square lattice symmetries on the fermions. The VBS order parameter is given
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V¥ ¥ (G

Figure 2.11: The O(N 7 1) vertex corrections which contribute to the renormalization of the
Néel and VBS order parameters. The order parameter receives corrections at one-loop order
from the Higgs fields (left) and the gauge boson (center). An additional two-loop (’)(Nf_l)
contribution (right) is possible - the diagram shown involves two intermediate Higgs propaga-
tors, but additional diagrams with gauge propagators or mixed gauge/Higgs propagators are
possible. These diagrams vanish exactly upon performing the trace over the internal fermion
indices.

by the bilinears 1 u*%1). As mentioned previously, our particular representation obfuscates
the full SU(2) action of spin rotation symmetry; however, the U(1) subgroup generated by
rotations around the z-axis is given by the global U(1) symmetry ¢ — ¢?%1) (recall that this
is not the U(1) gauge symmetry, which acts as ¢®°"). As a consequence, we focus on the
z-component of the Néel order parameter, which is given by ¥u¥1). The two-point correlation
functions of these bilinears are obtained by coupling them to external sources Jyps, neel and
calculating (’)(N 7 1) vertex corrections, illustrated in Fig. 2.11. Of note are (’)(N 7 1) two-
loop corrections, the form of which were first found in Ref. [187]. These two-loop corrections
to the Néel and VBS order parameters vanish in the pure staggered flux phase - this follows
immediately from taking the trace over the internal fermion loop and noting that Tr u* = 0.
We verify that these diagrams remain zero upon the inclusion of both Higgs fields and velocity
anisotropy, although this identity is less readily apparent.

We first outline the procedure from Ref. [199] for calculating the logarithmic corrections to

the vertex functions. At zero external momenta, our one-loop vertex corrections schematically

take the form

—

s=x [ sk () (291)

where H;(p), i = z,y,z, is a homogeneous function of p and illustrated in Fig. 2.11. The
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index ¢ indicates whether the J vertex includes a factor of u** (VBS order parameter) or p¥
(Néel order parameter). Once again, we can take the logarithmic derivative and remove the

explicit cutoff dependence, leading to the equation

d 1 21 us )
A—F,=—r— i H;(p) = B;i*. 2.92
5= 5, | a0 [ simoaomp) = B (2:92)

The B;’s are not gauge-invariant by themselves, and must be combined with the self-energy

to get a gauge-invariant quantity, which at the fixed-point value ®. gives

nBs = Buy: + Co =~ 0.06468N " + O(NJTQ) :

(2.93)
INeel = By + Co ~ —0.01634N7 ! + O(NJZ2> .
The Néel and VBS correlation functions in momentum space have the scaling form
GNéel(k?,W) — GNéel(ak, azw)QQWNéel—l ’
(2.94)

Gvps(k,w) = Gvgs(ak,azw)a%\ms*l '

Making a Fourier transform to real space, the equal-time Néel and VBS correlators have

the power law decay

1
~ 9
r3+2—21Ngel
1

r3+z—2nves

GNeel(T) (2.95)

Gyss(r)

Note that both the anomalous dimensions for the Néel and VBS correlators are quite small.
This is a rather surprising result and does not seem to be due to any particular small pa-
rameter. The magnitude of these anomalous dimensions do not decrease upon increasing the
numerical precision of our integration, so we believe them to be small but not identically zero.
We find that the gauge fluctuations generally enhance Néel and VBS correlations, whereas
Higgs fluctuations suppress them - the combined result is the stated anomalous dimensions.
As such, we cannot make a strong statement regarding which ordering the unstable U(1)
phase will prefer, as neither the Néel nor VBS order parameter show exceptionally enhanced

correlations. Higher-order corrections may show a clearer preference to either Néel or VBS
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ordering.

2.6.4 TREE-LEVEL EFFECT OF VELOCITY ANISOTROPY ON CORRELATION FUNCTIONS

As we have emphasized, one of the key features of this critical theory is that the emergent
Lorentz invariance of the staggered flux phase is broken by the presence of critical Higgs
fields, leading to a non-zero value of the symmetry-allowed velocity anisotropy term. This
anisotropy term also has the effect of breaking the emergent SU(4) flavor symmetry. We refer
to Ref. [187] for a more extensive study of the intertwining physical order parameters of the
SU(4) theory and which relations hold in the presence of the velocity anisotropy - for our
purposes, we note that the emergent SO(5) C SU(4) symmetry that relates the Néel and VBS
order parameters is broken down to the microscopic SO(3) x Cy. At tree-level, the scaling
dimensions of the two order parameters are still the same, but the angular profile of their
correlation functions are modified due to the velocity anisotropy. This lack of an emergent
SO(2) spatial rotation symmetry in the Néel and VBS correlation functions may be useful as
a numerical probe of the critical behavior, so we study the angular profile in more detail.

We analytically compute the spatial profile of the Néel order parameter at tree level. This
calculation turns out to be feasible non-perturbatively in the velocity anisotropy ®. The VBS
correlator is more difficult to study non-perturbatively in the velocity anisotropy, and we will
later compute corrections to leading order in ®.

The two-point function in momentum space is given by, with Q(p) the fermion propagator,

3
Gmaww=—/'dpiw@umﬂQ@+kMH

(27)?
_ 2 5 / d®p po(po + ko) + ape(Pe + ka.a) + apy(py + ky.a) (2.96)
—a2 2 | ap P(p + ke)? '
1
~31-2?) (g |+ [F-1) -
As before, we define k+ = (ko, ky & ®ky, ky £ ®k;). The Fourier transform
Bk,
Tk 2.97
[ ek (2.97)
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can be performed by a change of variables to give
91
Greal(r) ~ D fa(0,0)" (2.98)
a=%

where we change to spherical coordinates, t = rcosf, x = rsinfsin ¢, y = rsin f cos ¢, and

sin” @ (£2® sin 2¢ + 302 + ¢*)

f=(0,9) =1+ 1o : (2.99)
Therefore,
Geer(r) ~ g(b, cb)%4 (2.100)

where ¢(0,¢) = 1/f.(0,0)> + 1/f_(0,¢)? is plotted in Fig. 2.12. We note the enhanced
correlations of the Néel order parameter along the diagonals, which holds true for generic
values of ®.

An analogous calculation of the VBS order parameter is less analytically tractable, as the
one-loop integral cannot be made isotropic by a coordinate transformation. As such, we resort

to a perturbative study of the velocity anisotropy. This gives

E2k2 — k22
2|k| + %

Gvps(k) ~ |k| — ®° ]

+0(%) (2.101)

in momentum space, or

Gvps(r) ~ %4 [8 + ®?(cos 20(40 + 12 cos 4¢) + cos 40(6 — 3 cos 4¢) — 18 cos 4 — 14)]

(2.102)
in real space. The equal-time VBS correlation function is plotted in Fig. 2.12; showing en-
hanced correlations along the cardinal directions. Note that the correlation function changes
sign on the diagonals - this is an unusual feature, and would seemingly indicate lines in real
space where the VBS correlator vanishes. This feature is also present in the (9(@2) corrections
to the Néel correlator but ultimately vanishes in the non-perturbative result, so this result
may only be an artifact of the perturbative expansion. Further details on this calculation can

be found in Appendix A.8.
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Néel, non-perturbative
Néel, perturbative
VBS, perturbative

Figure 2.12: Plotted are the angular profiles of the equal-time Néel and VBS correlation
functions in real space, at the fixed point value of velocity anisotropy ®.. The Néel order
parameter shows enhanced correlations along the diagonals, whereas the VBS correlations
are more enhanced along the x and y directions. Note that we only plot the absolute value
of the correlation function, and the signs of the perturbative Néel and VBS correlators flip
when moving from the x and y axes to the diagonals. As this feature is not present in the
non-perturbative Néel correlator, it is possible that this feature similarly vanishes at higher
orders for the VBS correlator.

2.7 MONOPOLES

On the square lattice, there exists a monopole operator in the staggered flux phase - the
trivial monopole - that is invariant under all microscopic symmetries, and hence is an allowed
perturbation. To leading order, the scaling dimension of the monopole operator scales with
the number of fermions and becomes irrelevant for Ny > 3. Hence, the staggered flux phase
with Ny = 1 by itself is unstable to monopole proliferation - this is the mechanism which we
claim gives rise to ordered phases in the staggered flux phase, as condensation of the trivial
monopole is conjectured to lead to a fermion chiral mass generation corresponding to either
Néel or VBS order [459, 462]. Our calculations of the critical theory rely on the assumption

that the presence of massless scalar fields screens monopoles and renders them irrelevant at the
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critical point. Here, we draw attention to an additional contribution to the monopole scaling
dimension, which is the non-zero anisotropy in the spinon dispersion. Prior calculations of
monopole scaling dimensions in QED5; assume a Lorentz-invariant action for the fermions,
which is natural in pure QEDj given that velocity anisotropy terms are irrelevant in a 1/Ny
expansion. However, as we have shown, the presence of critical Higgs fields can give rise to
a non-zero velocity anisotropy at the critical point. An important question is whether this
anisotropy increases or decreases the monopole scaling dimension. In contrast with the direct
modification arising from the critical fields, which is O(1), the effect of the anisotropy on
the monopole scaling dimension is O(Ny). Such a modification, if calculated perturbatively
in @, arises at (9(@2) - this is still an appreciable shift given the relatively large anisotropy
®. =~ 0.46. Previous works have studied the effects of a spin Hall mass on the monopole scaling
dimension [119, 120], although this perturbation is more tractable as the spin Hall mass is
diagonal in the basis of spinor monopole harmonics. In Appendix A.9, we outline the structure
of a perturbative calculation for calculating the (’)(<I>2) corrections to the monopole scaling
dimension. An important observation which makes this calculation tractable is that, while the
saddle-point monopole gauge configuration will not take the form of the rotationally-invariant
Dirac monopole, corrections to the scaling dimension arising from this difference only arise
at higher orders in ®; hence, to lowest non-trivial order, one can assume a Dirac monopole
background. This calculation ultimately yields a divergent summation of terms involving
Wigner 3-j symbols; we leave for future work further study of how to properly regularize this
calculation.

Additionally, we briefly comment on the relation between this velocity anisotropy and the
monopole quantum numbers. Prior studies on the effects of a spin Hall mass [119, 120] have
found that the presence of such a term induces a spin polarization on the monopoles. Each
fermion flavor has a zero mode in the presence of a monopole, and half of these zero modes
must be filled in order to maintain gauge neutrality of the monopole. The presence of a spin
Hall mass polarizes these zero modes, which in turn causes a splitting in the scaling dimension
of the monopoles, with the most-relevant monopole being spin polarized. One may wonder
whether a similar valley polarization can arise due to our velocity anisotropy term due to the

presence of a p¥ in the anisotropy; however, we check that the first-order energy splitting
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of the fermion zero modes due to the velocity anisotropy vanishes. Higher-order corrections
including corrections from Higgs and gauge fluctuations will in general break the six-fold
degeneracy of monopole scaling dimensions; in particular, the monopoles with Néel and VBS
quantum numbers will have different scaling dimensions, which may cause a preference towards
a particular type of symmetry-breaking in the staggered flux phase. Further study of the
spectrum of monopoles at this critical point may be useful for determining the IR fate of
the proximate staggered flux phase - for now, we simply note that this behavior is more

complicated than a simple valley polarization of the monopoles.

2.8 (CONCLUSIONS

Building upon the results of recent numerical studies [140, 290, 342, 505], we have proposed
resolutions of long-standing controversies connected to theories of the cuprates: the phases
of the frustrated square lattice spin S = 1/2 antiferromagnets, and the nature of deconfined
criticality in such models. Deconfined criticality expresses the low energy physics in terms of
fractionalized degrees of freedom and emergent gauge fields, which can enter various confining
states with possible broken symmetries on either or both sides of the critical point. Although
there are several well-established examples, the transition between Néel and VBS states in
square lattice antiferromagnets [389-391, 416] has been of particular interest. One formula-
tion of this deconfined critical point is a version of QCDj3, quantum chromodynamics in 241
dimensions: a SU(2) gauge theory with 2 flavors of 2-component massless Dirac fermions,
each carrying a fundamental color charge. This theory is dual to a SO(5) non-linear sigma
model with a Wess-Zumino-Witten term [436, 477, 500]. There is now significant numerical
evidence that such a conformal field theory (CFT) does not exist, although there is likely a
nearby ‘complex’ CFT [164, 165, 182, 299, 301, 332, 506]. This leaves open the fate of a phys-
ical model with a Hermitian Hamiltonian, such as the Ji-Jo antiferromagnet on the square
lattice, between the Néel and VBS states. Here we have presented a theory in which the
putative QCD3 CFT is resolved into an intermediate stable gapless phase with Zo topological
order and gapless Dirac fermions [245, 435, 511]. The intermediate Zg spin liquid is flanked

by two proposed deconfined critical points, neither of which is a CFT, or even invariant under
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Lorentz tranformations. The absence of Lorentz symmetry permits several novel phenomena,
including the appearance of dangerously irrelevant couplings and logarithm-squared renor-
malizations, which can be tested in numerical studies. All of these phases and critical points
are described by extending QCDg with 3 real adjoint Higgs fields. The couplings of these
Higgs fields are tightly constrained by the transformations of QCD3 under the symmetries of
the underlying square lattice antiferromagnet, and an analysis of these symmetries occupy a
significant portion of this paper.

Our main results can be summarized in the context of the mean-field phase diagram in
Fig. 2.2 obtained from the SU(2) gauge theory with 3 adjoint Higgs field ®{ , 5 in Eq. (2.37).
This mean field theory yields 3 spin liquids, with deconfined SU(2), U(1), and Zy gauge fields.
We assume that the spin liquids with continuous gauge symmetries confine, except at possible
deconfined critical transitions to the Zs spin liquid. This phase diagram maps onto the Ji-
Jo model along the trajectory of the dotted blue line, and our proposed deconfined critical
theories are at the boundaries between the mean field SU(2) and Zs spin liquids, and the U(1)
and Zo spin liquids.

The numerical evidence for the confinement of the SU(2) m-flux spin liquid was reviewed in
Section 2.1. This confining state should have either Néel or VBS order [500], and Ref. [480]
argued by comparing to bosonic spinon theories that it should be the Néel state. The structure
of the critical theory from such a confining state to the gapless Zo spin liquid was presented
in Section 2.4, and we found some unusual log? corrections to both the Néel and VBS critical
correlators. From the geometry of the mean field phase diagrams in Fig. 2.2, and the numerical
studies on the square lattice antiferromagnet noted in Fig. 2.1, it is then natural to propose
that the U(1) staggered flux spin liquid confines to the VBS state. The critical U(1) gauge
theory for the boundary between the U(1) and Zs spin liquid was presented in Section 2.5,
and this has no log? terms. We also note that the log? correlators in Eqs. (2.71) and (2.72)
show a faster decay of the Néel order than the VBS order, which might be evidence that the
SU(2) critical theory is proximate to the VBS state rather than the Néel state, which would
reverse the direction of the arrow in Fig. 2.2.

Irrespective of the assignment of the Néel or VBS confining states to the SU(2) or U(1) spin

liquids in Fig. 2.2, we expect any direct phase boundary between the Néel and VBS states to
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be a first order transition. This follows from the numerical studies [182, 301, 332] noted in
Section 2.1.

Our critical SU(2) gauge theory for the S = 1/2 square lattice antiferromagnet has massless
2-component Dirac fermions with 2 flavors and 2 colors, and real critical Higgs fields with 2
flavors and 3 colors, and is shown in Eq. (2.45). This derives from a theory for the m-flux
to gapless Zgo spin liquid transition proposed by Ran and Wen [381, 384], and includes an
additional ‘dangerously irrelevant’ coupling K, which is the coefficient of a spatial gradient
term in the Higgs fields. We analyzed this theory along the lines of the 1/N; expansion
of Ref. [199] (the case of interest to us here is Ny = 1). We found that the theory with
K = 0 has infrared divergencies that arise from the highly anisotropic spatial structure of
the Higgs correlations, which is in turn a consequence of the non-Lorentz invariant Yukawa
couplings between the Higgs fields and the fermions. So even though the coupling K is formally
irrelevant, it must be included to understand the long-distance and long-time behavior of the
theory i.e. the coupling K is dangerously irrelevant. We found that the coupling K leads to
leading logarithm-squared corrections to various correlators, such as those in Eqs. (2.70) and
(2.71) for the correlations of the Néel and VBS order parameters; Appendix A.2 showed how
these corrections are exponentiated in a renormalization group analysis, lead to Eq. (2.72).
We also note that the logarithm-squared term was absent in the contributions to the dynamic
critical exponent, z, and we computed a non-Lorentz-invariant value for z in Eq. (2.64).

The critical U(1) gauge theory for the S = 1/2 square lattice antiferromagnet was discussed
in Section 2.5. It has massless 2-component Dirac fermions with 4 flavors and £1 U(1) gauge
charges, and a single complex critical Higgs fields with +2 U(1) gauge charge. The fixed point
of this theory yields a stable anisotropic dispersion for the fermionic spinons, which modifies
the angular profile of both Néel and VBS correlation functions. This anisotropy also has
non-trivial modifications to the scaling dimensions of the monopole operators of the critical
theory, although we leave a full calculation of this shift to future work.

It would be useful to examine numerical studies of the square lattice antiferromagnet for
logarithmic violations of scaling, Lorentz invariance, and SO(5) symmetry, and compare to our
predictions. In particular, we note the violations of scaling observed in Ref. [443], although

for a different square lattice antiferromagnet.
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Finally, we note that gapless Zs spin liquid studied is an attractive candidate for the ancilla
model of doped antiferromagnets [340, 561, 562], as it can realize a stable state in the second
ancilla layer for the pseudogap state.

As we were completing this paper, we became aware of some related work:

(7) Superconductivity has been observed [162, 220] in the doped J;-Jo model; doping the
gapless Zg spin liquid is a known to be a natural route to d-wave superconductivity [212, 437].
(it) Yang et al. [542] have detected a gapless spin liquid phase next to the Néel phase on the
Shastry-Sutherland model, which is obtained from the .Ji-J2 model by removing 3/4 of the
Jo bonds.
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Alright, fellow physicists, let’s ditch the textbook
magnets and plunge into the turbulent waters of
quantum spin liquids (QSLs). Forget your neat lines
of arrows - these guys are the anti-ferromagnetic free
spirits, perpetually swirling in a quantum ballet of

their own making.

ChatGPT, when I asked it to write a talk on this

Sign-problem-free effective models of triangular lattice

antiferromagnetism

3.1 INTRODUCTION

Quantum spin liquids [413, 426] (QSLs) are exotic phases of matter which arise when strong
frustration in a quantum spin system prevents the emergence of a conventional long-range
ordered phase at zero temperature. Among the various platforms proposed to realize these
unconventional phases, the geometric frustration present in triangular lattice Heisenberg an-
tiferromagnets make them a natural candidate for QSL behavior. Experimental realizations
in Yb-based compounds [48, 49, 99, 112, 279, 351, 385, 386, 429, 445, 534, 564, 565] as well as
organic compounds [211, 448, 449, 539] have yielded promising results, including a lack of mag-
netic order and a continuum of low-energy spin excitations suggestive of fractionalized spinon
degrees of freedom. Although the ground state of the spin S = 1/2 Heisenberg antiferromag-
net on the triangular lattice with only nearest-neighbor interactions is known to host conven-
tional coplanar magnetic order [42, 69, 200], the strength is reduced substantially by quantum
fluctuations, and only a small amount of additional frustration from next-nearest-neighbor in-

teractions is necessary to destroy the magnetic order [195, 207, 232, 345, 407, 517, 575]. The
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nature of the non-magnetic phase has been the source of much debate, both in these idealized
lattice models and in aforementioned experimental realizations. In particular, there have been
conflicting results on whether the fractionalized spinon excitations are gapped, have gapless
Dirac nodes, or form a spinon Fermi surface.

Parton constructions provide a robust theoretical technique for describing a large class of
phases of frustrated antiferromagnets, as well as phase transitions between them. The spin-
1/2 operator S; can formally be expressed as a bilinear operator in terms of either bosonic or
fermionic spinons, with the constraint of one spinon per site enforced by the introduction of
gauge fields. When the gauge field is deconfined, the system is a quantum spin liquid with
fractionalized spin-1/2 spinon excitations. Various ordered phases, such as antiferromagnetism
and valence bond solid (VBS) ordering, can be understood as instabilities to this deconfined
phase.

Using this parton construction as a starting point, effective lattice models for describ-
ing the possible phases of quantum antiferromagnets can be deduced by minimally coupling
bosonic spinons to emergent gauge fields. These effective models have the advantage of being
more amenable to numerical simulations, as demonstrated in [355], where an effective lattice
model describing quantum antiferromagnets on the square lattice with easy-plane U(1) sym-
metry was simulated numerically using Monte Carlo techniques. Large-scale simulations of
the non-compact CP! model, conjectured to describe the deconfined quantum critical point
separating Néel and VBS order on the square lattice, have also been studied [45, 79, 262, 335]
through Monte Carlo sampling. Outside the context of quantum magnetism, much progress
has been made in developing numerical methods for simulating bosonic matter coupled to
gauge fields [106, 128].

Following this approach, we present the results of a Monte Carlo simulation of an effective
model of SU(2) antiferromagnetism on the triangular lattice. This effective model is derived
using a bosonic spinon representation of the spin-1/2 degrees of freedom, where a mean-field
analysis [408] yields a gapped QSL phase with Zs gauge fluctuations and an emergent O(4)
symmetry that rotates between the two low-energy bosonic spinon excitations. Our effective
model which captures the QSL phase as well as ordered phases arising from either spinon

condensation (coplanar magnetic order) or gauge confinement (non-magnetic VBS order) is
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that of an O(4) vector field coupled to an odd Zy gauge field [143, 217, 419, 435]. The odd
nature of this Zs gauge field is a consequence of the half-integer spin, and is essential in
preventing the existence of a trivial disordered phase. The odd gauge field also leads to the
appearance of a Berry phase in the action, which prohibits a direct Monte Carlo sampling of
the partition function due to a sign problem. One of the primary contributions of this work
is to present a sign-problem-free representation of this model, which is applicable to

The primary result of this work - the phase diagram as a function of boson hopping J
and gauge action K, (to be precisely defined later) - is given in Fig. 3.1. All three phases -
QSL, magnetic order, and VBS order - are present, with the valence bond ordering being of
the v/12 x /12 form, consistent with the pure gauge theory (J = 0) limit, which has been
studied extensively [92, 318, 320, 378, 379]. Of note is a direct transition between the VBS and
magnetic phases, which has been argued [219, 458, 463, 517] to be described by an emergent
quantum electrodynamics with Ny = 4 flavors of massless Dirac fermions. Our numerical
results give some evidence for a first-order transition, although for reasons we will describe
later, accurate Monte Carlo simulations of this model pose a number of challenges and we do
not believe a continuous transition can be definitively ruled out.

The structure of this paper is as follows. In Section 3.2, we make explicit the connection
between our effective model and the microscopic spin degrees of freedom. In Section 3.3,
we describe the duality transformations that render the effective model sign-problem-free.
Although these techniques are of general interest, we stress to the reader that the results of
the Monte Carlo simulations, presented in 3.4, may be understood independent of the duality

transformations.

3.2 CONNECTION BETWEEN EFFECTIVE MODEL AND QUANTUM MAGNETISM

We first outline a derivation of the effective model to be studied, and analyze its possible
phases. Our starting point is the spin-1/2 Heisenberg antiferromagnet on the triangular

lattice,

H=> J;5-5;, (3.1)
ij
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Figure 3.1: We plot the phase diagram of an O(4) vector model coupled to an odd Zy gauge
field on a triangular lattice, as determined through classical Monte Carlo simulations. The
model exhibits three phases, which correspond to a quantum spin liquid, v/12 x v/12 VBS,
and coplanar antimagnetic order when regarded as an effective model of spin-1/2 Heisenberg
antiferromagnetism on the triangular lattice. Algorithmic limitations discussed later prevent
clear establishment of the location of the magnetic phase transition.

with J;; short-ranged antiferromagnetic interactions. The relation between the SU(2) trian-
gular lattice antiferromagnet and a theory of bosonic spinons coupled to a Zo gauge field was
first derived in [408] - by generalizing the SU(2) theory to USp(2M) and proceeding via a
combined large-M and large-S expansion, the model becomes analytically tractable. For com-
pleteness, we provide a derivation of this in Appendix B.1, and summarize the main points

here:

o The bosonic spinon representation introduces a dynamical U(1) gauge field. The gapless
photon excitations arising from these gauge fluctuations can present an obstacle for
realizing a stable spin liquid phase. However, the saddle-point solutions for the gauge
field - justified in a large-M, S expansion - spontaneously break the U(1) fluctuations

down to Zg, where the gauge excitations (visons) are gapped.

e The bosonic spinon dispersion in the presence of this saddle-point solution has two
minima at non-zero momenta. Writing an effective action in terms of these low-energy

spinons, the lowest-order quartic interaction terms allowed by symmetry preserves an
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O(4) symmetry that rotates between the two complex bosons, which contains both the

SO(3) spin rotation and 120° lattice rotation symmetry.

From these points, can write down an effective model for triangular lattice antiferromag-
netism, which we will show can support magnetic order, VBS order, and spin liquids. This
model consists of an O(4) vector on each site of the triangular lattice, which parameterizes
the bosonic spinon fluctuations. These degrees of freedom are minimally coupled to a Zo
gauge field. Importantly, this is an odd Zo gauge field, which arises from a background spinon
density of one spinon per site. The odd nature of this gauge theory prevents the confining
phase from being a trivial gapped phase, in agreement with LSM theorems that prohibits
such a phase for half-integer spins.

This model supports three types of phases. When the O(4) spinons are uncondensed and
the gauge field is deconfined, the system is a gapped Zo spin liquid with topological order.
Condensing the bosons spontaneously breaks the O(4) symmetry, which in turn breaks both
the SO(3) spin rotation symmetry and 120° lattice rotation symmetry. Because of the Zo
gauge redundancy, the ground state manifold (GSM) for this order is S3/Zs = SO(3) - in
agreement with the SO(3) GSM of the 120° magnetic order. The confining phase of the Zs
gauge field preserves spin rotation symmetry, but due to the odd nature, breaks lattice sym-
metries rather than being trivial - it is a valence bond solid phase. The pattern of lattice
symmetry breaking is known in the pure gauge theory limit with nearest-neighbor interac-
tions to be a v/12 x /12 order [320], with a 12-site unit cell, although effective longer-range
interactions generated by the spinons can lead to different symmetry breaking patterns [455].

We study this model using Monte Carlo techniques. The partition function for this two-
dimensional quantum model on the triangular lattice can be mapped to an equivalent classical

model on a three-dimensional stacked triangular lattice,

2= Y [ dzas (le?a!ﬂ) [T s | exp(~Hlza,8])

Sjj+a==+l J J (3.2)
J .
Hlzas) = =5 Y sjgei (FaZitna+ ) =KD [ sijia-

The two bosonic spinons zj,, @ = 1,2 are minimally coupled to a classical Za gauge field
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sjj+p living on the links of the stacked triangular lattice. The odd nature of the gauge field
is captured by the Berry phase term [] S+ Note that this Berry phase takes on values
41, and hence the partition function as written in Eq. 3.2 is not amenable to Monte Carlo
simulations. As such, we must perform a series of transformations to obtain a sign-problem-
free representation, where the partition function is expressed as a sum over purely positive

weights.

3.3 SIGN-PROBLEM-FREE MAPPING

In this section, we describe the mapping from the partition function in the previous section
to one consisting only of positive weights. This is a very general mapping, valid for any
O(2n) vector model with integer n on a large class of lattices, including the stacked triangular
lattice relevant to our study of quantum antiferromagnetism on the 2D triangular lattice.
However, the general approach does not differ substantially from the simplest case, which
is an O(2) model on the 3D cubic lattice. As the notation required to state the mapping
in its most general form is rather complex, we find it most clear to first describe the sign-
free mapping of an O(2) model coupled to an odd Zsy gauge field on a 3D cubic lattice, and
then subsequently describe the modifications necessary for alternate lattices or for general
O(2n) models. The mapping in this simpler limit was first carried out in [355, 415], but
using a different approach that does not as easily generalize to O(2n) models. We outline
a more generalizable mapping which also more carefully treats subtleties involving periodic
boundary conditions. The initial steps of this mapping follow along the same lines as well-
known particle-vortex dualities [103, 227, 363], which map an O(2) model to a dual O(2)
model coupled to an emergent U(1) gauge field. In this language, our Zs gauge field couples
to the emergent U(1) gauge field via a mutual Chern-Simons term - we demonstrate that this

allows for the Zy gauge field to be integrated out, yielding a sign-problem-free representation.

87



Chapter 3. Sign-problem-free effective models of triangular lattice antiferromagnetism

3.3.1 O(2) MODEL

Our model is described by the partition function

z= % /Hdeexp<z<znsw

{s5,j+p==%1}

4 A0 Kis
5 > siacos < ; J> —ig > (- Sj,j+?)>, (3.3)
J

j7ﬁ

with, as in the previous section, A, denoting the discrete lattice derivative, and [ [ denoting
the product of spins around a plaquette. This is an XY model whose degrees of freedom are
angular variables ¢;, coupled to an odd Zy gauge field. The final term, corresponding to the
Berry phase of the background boson filling, gives negative weights to the summation, thereby
preventing sampling through Monte Carlo techniques.

Our first step is to rewrite the action for 6; using the identity

J(4) (3.4)

sAcose x Z

p=—00

where A > 0, s = £1, and I,(A) is the modified Bessel function of the first kind. The
asymptotic behavior of I,(A) as A — oo contains the more standard action for p when the
Villain approximation is used,

I(A>1) xexp [—éi] . (3.5)

For the O(2) model, this approximation does not alter the phase diagram, so we will use this
for notational simplicity and to connect to prior work. However, the following mapping can be
carried out while keeping the full Bessel function explicit, which will be necessary for general

O(2n) models as an analogous approximation breaks the O(2n) symmetry down to O(2)®"

We apply this identity to each instance of s; ;7 cos (A‘éej ) , thereby introducing an integer-
valued field p,, on each of the links. This allows 6; to be integrated out at the cost of imposing
a divergence-free constraint A,p, = 0. This divergence-free constraint implies that p, must

form closed integer-valued “current loops.” This requirement can be made explicit by writing
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pu as the curl of a height field, h3u living on the links of the dual lattice. This allows for
the creation of local current loops - for periodic boundary conditions, one must also include
the possibility of non-contractible loops that cannot be expressed as the curl of a height field.
Assuming we have periodic boundary conditions in all three directions, it is sufficient to pick

a representative non-contractible current loop in each direction, (w?,,wY ,w? ) and express

T Wiy W5,
Dip = EMU)\AVhEA + 1 - Ql_fju (36)

where 77 = (ng,ny,n;) is an integer-valued vector specifying the winding number of the
current in each of the three dimensions. This representation introduces additional degrees of
freedom, as one may always shift h3,, by the divergence of a scalar field without changing the
current configuration. In the language of particle-vortex dualities, this reflects the emergent
U(1) gauge redundancy. These additional degrees of freedom are crucial to our sign-free

mapping. Our partition function at this point is

SO SN0 SR S U5 5) | Ot

{S] jJr[,L*:tl} h]N:_OO n;=—00

g T T
J I J
In this form, the Berry phase term can be absorbed by a shift h?u — hfu + h%“ where
0 _
eul,)\Ayh% = Opr-
We now address the coupling between the current p;, and the gauge field, which corresponds

to a mutual Chern-Simons term in the vortex representation. For the local current loops

expressible in terms of the height field, we use the identity

_ 1— 8~ _ 1— S iy
exp ZWZE#V)\AV]IEA% = exp szh]pHg”Jm , (3.8)
it ji
which can be verified by expanding out the curl and collecting terms proportional to hﬁu‘ To

address the coupling to non-contractible current loops, we first note that after performing the

transformation in Eq. 3.8, the coupling to the non-contractible current loops is the only place
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where the gauge field appears explicitly - all other terms in the partition function only depend
on the plaquette flux [ s; j47. We argue that if any component of 77 is odd, the contribution
to the partition function vanishes. This is because for an arbitrary configuration and for a
choice of direction 7, one can make a “large” gauge transformation consisting of flipping all
s; j+v spins that intersect a plane tangent to v. This keeps all the plaquette fluxes invariant
but flips the sign of a single s; ;.5 that intersects the the non-contractible current loop in the o
direction. If the winding number in this direction is odd, the new configuration contributes to
the partition function with the same magnitude but opposite sign as the original one, leading
to an exact cancellation. We therefore restrict our sum over n; to be even, in which case the
coupling to the gauge field drops out entirely as it always contributes a factor of 1. If one
interprets the current loops as bosonic worldlines, this constraint is simply the statement that
bosons must be created in pairs and sectors with odd numbers of bosons are unphysical.

We now integrate out the gauge field. Note that only the plaquette flux I_HD# = <I>37 4
appears in the partition function (the dual link 7, u uniquely labels a plaquette). Although
normally incorrect, we claim that it is valid to perform an independent summation over all
possible plaquette flux values <I>3’ u = 0,1 on each plaquette. This is not true in general, as
there is a non-trivial constraint on the possible values of flux - starting from the flux-free
configuration with s; ;15 =1, D5 u= 0, gauge fluctuations can only change the divergence of

® at any dual site by multiples of two, i.e.,
V@5, =0mod 2. (3.9)

The key observation is that the redundant degrees of freedom introduced in the height field
representation for p;, serve as Lagrange multipliers to dynamically enforce Eq. 3.9. As a
consequence, one can directly perform the summation over all gauge field configurations. To
see how this constraint is enforced, let us make the redundant degrees of freedom explicit by
writing h;} u= Eﬁ u T Ay f]f-, where we perform the summation over both distinct current loop

configurations h and the redundant degrees of freedom f. The coupling of f to the gauge
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field is

exp |im Y Aufs®s | =exp [—im Y f:A, 0 | (3.10)
Jp Jn

Performing a summation over f]f- will impose the constraint Eq. 3.9.
Integrating out the gauge field gives the final sign-free representation of our partition func-

tion,

o0 o0
Z= Z Z exp ( - % Zpiu + Kq Zej,jJruUj,jJru) (3.11)
Job ot

h- =—o00 N;=—00
Jn *

where

tanh K ; = e 2K ,
(3.12)

0554 =1 —2(hj, mod 2),
Pju is defined in terms of h?u and 77 as in Eq. 3.6, and ¢ is a fized field taking values +1, with
the constraint that the product of € around any temporal (spatial) plaquette is +1 (-1). The
factor of ¢ arises because of the background height field h°, which in turn is a consequence
of the Berry phase. Because of this, the model in the limit ¢ — oo (i.e. when the O(2)
coupling drops out and we recover a pure Zo gauge field) reduces down to a 3D Ising model
with frustration on the xy-planes, which is dual to an odd Zs gauge theory, rather than a
frustration-free Ising model dual to an even Zy gauge theory.

This theory has a simple interpretation, illustrated in Fig. 3.2. One can interpret the field
0554, 852 Zo flux variable living on the plaquettes of the lattice, and the relationship between
p and o translates into the constraint that any odd current loop must form the perimeter of an
open “surface” of flux. Closed surfaces correspond to height field configurations with vanishing
curl. For an even Zs gauge theory, the coupling constant K; has the simple interpretation
of a surface tension, with an energy cost proportional to the surface area. When only closed
surfaces are allowed, these surfaces also have the interpretation of domain walls of the dual
Ising model. For an odd Zs gauge theory, the background field e introduces frustration -
plaquette fluxes cost positive or negative energy depending on the location, and it is no

longer possible to energetically satisfy all plaquettes using only closed surfaces.
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Figure 3.2: The dual representation of an O(2) model coupled to Zy gauge field can be ex-
pressed in terms of integer-valued current loops and Zs membranes of flux, with the constraint
that odd-valued current loops must form the boundary of an open Z, surface. The effect of
a Berry phase is to introduce frustration in the surface action. This dual mapping is suitable
for both the square lattice (left) as well as the triangular lattice (right).

3.3.2  GENERALIZATION TO O(2n) MODELS

We now show how this sign-free mapping lifts to a model where our degrees of freedom consist
of O(2n) spins, with n > 1. While particle-vortex dualities do not have a generalization to
non-Abelian O(2n) models, one may think of this mapping as a sort of particle-vortex duality
applied to an Abelian O(2)®" subgroup. The full non-Abelian O(2n) symmetry is preserved in
virtue of working with an explicit lattice action and restricting oneself to exact transformations
that necessarily keep the partition function invariant.

An n-component complex vector zj,, 1 < a < n, lives on each site, with the constraint

that 3 2ja|> = 1. Our partition function is
2
Z = Z /Hdzja 6(Z\zja| —1)exp (KZHSJ:j+/7
{s;5400=21}" J.a a 00

+J Z Sj,j-i-,a (Z;a2j+u7a + C.C) — ’Lg Z(]_ — Sj,j-l—?)) y (313)

j7l/;7a j
Our starting point is a representation z; that makes connection to our previous mapping,

Zjo = rjaeigja. Note that in this represntation, the magnitude fields 7;, are gauge-neutral,
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and only the phase variables 0;, are affected by gauge transformations. In terms of these

variables,
2= X T[] i >l = Dexp (xznw
{sj,j+p==%1} J O O
T
+J D STl itua 08(Bubia) =iz 3 (1= Sj,jm), (3.14)
jvﬁ?a ]

As before, we use the identity Eq. 3.4, except we introduce n different integer-valued fields
Pjua on each link. Making the Villain approximation is no longer appropriate in this case
- doing so breaks the full O(2n) symmetry down to n copies of O(2), as the coefficient in
front of the cosine term is no longer just a coupling constant but rather the dynamical field
Tj.aTj+u,a- As such, we keep the Bessel functions ij,a,u(JrjvaTiju,a) explicit in our rewriting.
Such an approach has previously been used to study O(2n) models at finite density [128] - this
current loop representation also serves to cure the sign problem present when one introduces
a non-zero chemical potential. This representation obfuscates the full O(2n) symmetry, but
retains an S, subset coming from permutations of the a indices.

The rest of the mapping proceeds in a similar manner. We introduce n height field repre-
sentations h , with the plaquette flux & Tu coupling to the total height field > h Fuor The
Berry phase term can be absorbed by a shift in any of the n height fields - the choice is

arbitrary and does not change the final representation.

Integrating out the gauge field gives the final form of our partition function,

2oy H/wadma o

] apu=—00 ja

(3.15)
Hlre el = 32 [0 (s i) + K507, -
o)

where
o3, —1—2<Zhja“) mod 2

e 2Kd — tanh K

(3.16)

and € is a static field taking values 41, such that the product of £ around each spatial
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(temporal) dual plaquette is —1 (41).

3.3.3 GENERALIZATION TO ALTERNATE GEOMETRIES

In our previous sections, we described this sign-free mapping on a cubic lattice, primarily for
the simplicity in notation that the lattice provides. However, we emphasize that this mapping
holds for more general lattices, including the stacked triangular lattice relevant to our current
interest, as well as a stacked kagomé lattice. This mapping is easiest on lattices with even
coordination, where integrating out the 6 fields yields a familiar divergence-free constraint on
p. In Fig. 3.3, we show this for a stacked triangular lattice, where the constraint is A,p;, = 0,
L = €1,6e3,e3,7. and can again be satisfied by a height field representation. These height
fields couple to the Zs gauge flux in an identical manner, and inclusion of the Berry phase term
manifests itself as a constant field €57+, living on the dual lattice (stacked hexagonal lattice),
with the constraint that the product around any spatial (temporal) plaquette is —1 (+1). An
example configuration is shown in Fig. 3.3. While the dual lattice has odd coordination and
a dual bond cannot technically be specified by the indices (j, i), we will continue to use the
notation hfu for simplicity as this subtlety will not be relevant.

The lack of a bipartite lattice raises an important point in our duality mapping. Because our
original lattice is not bipartite, the dual lattice does not have a natural definition of divergence
- this can be seen from the stacked hexagonal lattice, dual to the triangular lattice, which
has odd coordination so no symmetric definition of “ingoing” and “outgoing” bonds can be
made. As a consequence, one must make sense of the use of dual lattice divergences in our
derivation, which is employed in Eq. 3.9. Important to this is the Zs nature of our gauge field
- as a consequence, all divergences appear in equations that are only sensitive to whether the
resulting expression is even or odd. Hence, the sign structure of the divergence operator on
the dual lattice is irrelevant, as a different sign structure only changes the divergence by an
even amount.

We may also verify our method of integrating out the Zs gauge field without making any
reference to a divergence. Our “naive” procedure of integrating out the Zs gauge field by

independently summing over all possible plaquette flux values <I)3 = 0,11s valid so long
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Figure 3.3: The presence of a Berry phase gives rise to frustration in the effective Ising model
on the dual lattice. For our theory defined on a triangular lattice, we show one possible

tiling of the dual (hexagonal lattice) lattice, where the field €55, = —1 on red links, and 1

otherwise. This is chosen so that the product around any spatial plaquette gives —1.
as unphysical flux configurations are dynamically cancelled out by the redundant degrees of
freedom introduced by introducing a height field representation. The key feature we need is
some notion of a “gauge” transformation h?u — h?u +A, fjf. that can leave the p;,, current con-
figuration invariant but change the parity of h?u along an arbitrary closed surface. Unphysical
flux configurations correspond to having an odd total flux along some closed surface, and for
these configurations, performing a gauge transformation flips the sign of its contribution to
the partition function and hence cancels out the unphysical configuration. For a triangular
lattice, defining such a transformation in terms of the divergence of a scalar field on the dual
lattice is not straightforward - however, one can easily verify that such a transformation is still
possible by creating a current loop on each plaquette of the closed surface, with the orienta-
tions chosen in such away that all currents cancel out. The smallest such surface involves five
plaquettes, and as such, there is no symmetric way of distributing the shifts h?u — hﬁu + 1.
Crucially, the Zy gauge field only sees the parity of h?u’ so this subtlety is not an issue.

For lattices with odd coordination, such as the hexagonal lattice, one must take extra care

with dealing with the divergence-free constraint on the original lattice. While we believe that
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our duality mapping will likely be applicable to these models as well, we defer a more thorough

analysis for future work.

3.4 RESULTS FROM MONTE CARLO SIMULATIONS

We now present numerical results of the simulation of an O(4) vector model coupled to an
odd Zy gauge field on the triangular lattice. The Hamiltonian is defined in Eq. 3.15 for two

species of current loops. This model has several simple limits:

e K4 =0: in this limit, the gauge field becomes static and our model reduces to that of an
O(4) model, albeit in an unconventional current loop representation. The presence of a
Zo gauge field still has the effect of restricting our observables to be gauge-invariant, and
hence the critical theory for the boson condensation is given by O(4)*, which possesses
the same critical exponents as the O(4) universality class but for which differences can be
found in terms of the excitation spectrum for a finite-size system [515]. This difference
is reflected in our dual theory by the topological constraint that the winding number of

current loops must be even.

e K, = o0: in this limit, confinement of the gauge field prevents individual bosonic excita-

tions. The relevant degrees of freedom are the gauge-invariant SO(3) order parameters

T

z;0%z;. For an even Zy gauge field, this limit would be described by a non-linear o model,
and would support an ordered and disordered phases. This trivial disordered phase is
ruled out in our case from the LSM theorem, and the simple non-linear o model picture
is modified for an odd Zs gauge field by the influence of a Berry phase on vortices of the
SO(3) order parameter. We expect that this limit will always give an ordered phase,

which we will verify in future numerical studies.

e J = 0: in this limit, we expect to recover an odd Zs gauge theory. In our dual formu-
lation, current loop excitations cost infinite energy and our state space is restricted to
configurations with p;,, = 0. Within this space, we have a single Zy degree of freedom
residing on each dual site (j), the flipping of which at site k corresponds to the shift

Pina = Pjua + Buffe, with f;, = 6 (performed on a random choice of a). Since
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the action is only sensitive to the parity of > h this is effectively a Zo degree of

Jpo
freedom. Our model then reduces down to a frustrated Ising model defined on the dual
lattice - dual to the odd Z, gauge theory - which displays a transition at a critical value
of Ky from a disordered to an ordered phase. In terms of the original spin degrees of
freedom, this is a transition from the gapped Zs spin liquid to a VBS phase. Semiclas-

sical analyses [320] predict that this transition is in the O(4) universality class, and this

prediction is supported by quantum dimer model simulations [541].

We analyze the Hamiltonian in Eq. 3.15, for n = 2 and defined on an L x L x L stacked

triangular lattice, by sampling configurations {rjq , ks, }. Simulations are done for L = 12,

jra
24, and 36 - keeping the linear system size a multiple of 12 is necessary to accommodate the
large unit cell of the v/12 x /12 VBS order. Movement through the configuration space is

accomplished by four types of local moves, which are accepted with a probability determined

by the Metropolis algorithm::
o Updates of the radial variables r, on a random site.

o Shifts of one of the two random height fields. h;w — h?ua 4+ 1 on a random dual bond

o Shifts of the random height fields on two neighboring temporal dual bonds. This is
done to assist in thermalization, as it removes intermediate energy barriers required to
annihilate certain current loop configurations. The utility of this move is a consequence

of the triangular lattice geometry.

e On a random dual site, shifts of all the neighboring height fields by £1, chosen in a
way such that the current loops pj,. remain invariant. This effectively constitutes a

single-site spin flip of the Ising model that resides on the dual lattice.

We also use several global updates, which we will describe in the subsequent sections.

To measure the breaking of the O(4) symmetry (corresponding to coplanar antiferromag-
netism), we define the order parameter s = ) j(T]2'1 - r]2-2). This transforms under the adjoint
representation of the O(4) symmetry - in terms of the original complex spinons Zj, this is the
quantity > ; ,Ej 0*Z; - although it is only this element that remains local under our set of dual-

ity transformations described in the previous section. This is a simplification of O(2n) models
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for n > 1; for an O(2) model in this representation, no such local order parameter exists, and
symmetry breaking must be measured through the winding number of non-contractible loops.

We use the Binder cumulant

(3.17)

to identify the location of the magnetic phase transition. This quantity approaches unity in
the ordered phase (when (s2)2 = (s*)) and zero in the disordered phase (when s is a random
Gaussian variable with mean zero, (s*) = 3(s?)2). Within the framework of our classical
model, the mechanism for the symmetry breaking of s for large J is as follows. As is the case
for an O(2) model, we have an entropic proliferation of current loops at large J. Here, we
have two flavors of current loops. A current loop of flavor @ = 1 induces a polarization of the
r; variables along that current loop such that it is energetically preferable to have r;; > 7,2,
and analogously for an a = 2 current loop. Frustration results from current loops of different
flavors intersecting on the same site, and hence it becomes energetically favorable for a single
flavor of current loop to coherently proliferate. As we will demonstrate, the complexity of this
multi-step mechanism for symmetry breaking leads to large autocorrelation time for s in the
ordered phase, as it becomes difficult for s to switch sign once current loops have proliferated.

Non-magnetic order resulting from gauge field confinement is reflected by lattice symmetry

breaking of the gauge-invariant bond frustration, e To make connection with prior work

T
studying triangular lattice VBS order [234], we associate an unsatisfied dual bond (63 1O =
1) with the presence of a valence bond P;, = 1 on the spatial bond below (7, ). With this

identification, we can calculate the momentum-dependent susceptibility
1 o (1 — s
xves(k) = 3 Z etk (ri TJ)(Pi,gl Pj,%) (3.18)
]

where we choose to probe the bond structure on the e; bond. Note that k and r;; are
two-dimensional vectors specifying only the spatial index. The presence of v/12 x /12 VBS

order is reflected in sharp peaks at the X and M points in the Brillouin zone. We define

the quantity RV =1 — %W

where the Bragg peak becomes infinitely sharp as L — oo, but goes to zero in a phase when

, which approaches unity in the VBS ordered phase
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the height and width of the Bragg peak saturate with system size. The crossing of R{\,‘TBS
for different system sizes is universal and serves as a probe of the location of the VBS phase
transition. We also present results for an analogous quantity R\)/(Bs which measures the height

of the Bragg peak at the X point.

3.4.1 PURE O(4) MODEL LIMIT

We first present results for the pure O(4) model limit (K4 = 0). In this limit, we can compare
our numerical results to a classical Monte Carlo simulation of an O(4) nonlinear o model. Note
that while gauge fluctuations drop out entirely, there is still a non-trivial gauge constraint
in our Hilbert space, such that only gauge-invariant observables such as spinon bilinears are
non-zero. The critical theory of the phase transition is hence O(4)*, which possesses the same
critical exponents as the O(4) universality class but for which differences can be found in
terms of the excitation spectrum for a finite-size system [515]. This difference is reflected in
our dual theory by the topological constraint that the winding number of current loops must
be even.

Recall that for the simpler case of an O(2) model, where are dual theory consists only of
a single type of integer-valued current loops, classical Monte Carlo simulations which only
involve local moves are insufficient for measuring the order parameter for the O(2) transition
given by a non-zero average winding number of the current loops. These non-contractible
loops cannot be obtained from local deformations and must either be generated through a large
global update proposal - acceptance of which becomes exponentially unlikely as the system
size increases - or through the use of worm algorithms [370, 371], where current loops are
generated by starting with an “open” current string and letting the ends move with suitably-
defined probabilities until the two ends meet and form a closed loop. Our generalization to
an O(4) model naively avoids the need for worm algorithms, as our dual theory retains access
to a local order parameter s in addition to the winding number. However, we find that the
autocorrelation time of s becomes intractably large, on the order of 10° global sweeps for
L = 24, near the critical point and into the ordered phase when only local updates are used.

This is because, even if one is restricted to the zero winding number sector, large fluctuations
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Figure 3.4: We compare results of numerically simulating the bosonic O(4)* transition while
neglecting gauge fluctuations (K; = 0). Direct simulation of an O(4) non-linear o model (top
row) accurately determines the critical point J. ~ 0.675 while retaining a small autocorre-
lation time due to global Wolff updates. A dual current loop representation with classical
worm updates (middle row) has comparable performance. After restricting to “surface worm”
updates (bottom row), which are the updates that can be generalized to include gauge fluc-
tuations, we observe a diverging autocorrelation time as we enter the ordered phase and a
decrease in accuracy of the Binder cumulant, although an estimate of the location of the
critical point can still be inferred.
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in the total current are necessary to induce fluctuations in s. The acceptance rate for the
creation of local current loops is quite small, on the order of 1-2% near criticality. Combined
with the geometric inefficiency of local current loop updates - creation and annihilation of
large current loops require a number of local moves proportional to its area, despite the energy
only scaling with the perimeter - leads to this diverging autocorrelation time. Generalizing
the classical worm algorithm to account for gauge fluctuations is non-trivial, as one has
the constraint that odd current loops must form the boundaries of surfaces of gauge flux.
While it is straightforward to apply a classical worm algorithm to a gauge-invariant pair of
current loops, we find that this, along with an implementation of a “surface worm algorithm”
(SWA) proposed in [106] and summarized in Appendix B.3, are insufficient for reducing the
autocorrelation time to a tractable magnitude. This is because the propagation of a pair of
current loops is much more energetically costly than a single current. An appropriate worm
algorithm in the limit of weak gauge fluctuations would be to propagate a worm as normal,
calculate the energy cost of an enclosed surface (ideally the minimal surface) once the worm
has terminated, and accept the worm with a probability determined by the energy cost of the
surface. However, implementing this algorithm is challenging as it requires an efficient way of
finding a candidate surface once the worm has been grown. We leave further development of
this approach to future work.

In Fig. 3.4, we present the Binder cumulant, the order parameter (s?), and the autocorre-
lation time from direct simulations of an O(4) NLoM as compared to simulations in the dual
theory, using either a classical worm algorithm (only appropriate in the K; = 0 limit) or a
SWA. While our simulation with a SWA is able to identify the location of the critical point
Je. &= 0.675 with reasonable accuracy, the large autocorrelation time prevents us from both

going to larger system sizes and obtaining high precision results for the Binder cumulant.

3.4.2 PURE GAUGE THEORY LIMIT

We also consider the pure gauge theory limit (J — 0), which is dual to an Ising model with
spatial frustration. In this limit, all current loops cost infinite energy, and our state space is
restricted to configurations with p;,, = 0. Within this space, we have a single Zy degree of

freedom residing on each dual site (§), the flipping of which at site k corresponds to the shift
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h-

Fuo = N T with f;, = &7 (performed on a random choice of o). Since the action is

Jjo!

only sensitive to the parity of > this is effectively a Zo degree of freedom. Our model

o M
then reduces down to a frustrated Ising model defined on the dual (hexagonal) lattice, the
simulation of which is carried out using local spin flips and a global cluster update similar to
the one described in [320]. We define our cluster update explicitly in Appendix B.4. Note
that in contrast to the pure O(4) model limit where we provided a numerical comparison with

results from an O(4) NLoM simulation, we do not provide an analogous comparison here as

the degrees of freedom in our model explicitly corresponds to that of a frustrated Ising model.
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Figure 3.5: We present results of simulating an odd Zy gauge theory on a triangular lattice,
which displays a transition from a deconfined phase for Ky < Kj and a VBS phase with
V12 x /12 order for Kg > K, with K. ~ 0.82. The equal-time dimer correlation function,
plotted here for L = 36, displays sharp peaks at the M and X points in the ordered phase.

The phase diagram of the fully frustrated quantum Ising model on the hexagonal lattice
has been analyzed theoretically [92, 319], although no numerical studies have been conducted
to our knowledge aside from results at a single point in the ordered phase in [320]. In the
limit of small transverse field, this is equivalent to a triangular lattice quantum dimer model
with interaction strength V' and hopping ¢ at the point V/t = 0. These models have been
studied much more extensively [378, 379] and the existence of a v/12 x /12 phase has been
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well-established. We note that path integral Monte Carlo simulations of this two dimensional
quantum Ising model in terms of a three dimensional classical model pose much more chal-
lenges due to the inherent discretization errors not present in dimer model simulations. In
particular, we find that an isotropic scaling of the spatial and temporal couplings Kj, K]
leads to very weak ordering. This is because for a system size finite in the temporal direction,
increasing K simultaneously increases the antiferromagnetic interaction strength as well as
the effective temperature of the quantum model. In order to obtain a clear signature of the

phase transition, we parameterize the couplings as
K=K,

1n22} (3.19)

K) = min{Kd,

in order to prevent K from getting too large; the particular value of ln72 is chosen such that

the quantum temperature (in units of the transverse field) is equal to the inverse length of
the system size in the temporal direction.

We present numerical results in Fig. 3.5. We identify a transition into a v/12 x /12 ordered
phase at Ky ~ 0.82, in surprisingly good agreement with semiclassical analyses [319] of the
quantum Ising model which predict K; = % ~ 0.816. We also plot the “dimer density,”
defined as the number of unsatisfied spatial bonds per site. This should approach the minimum
value of one and hence reduce to the V/t = 0 quantum dimer model in the Ky — oo limit,

which agrees with our numerical results.

3.4.3 ANTIFERROMAGNET TO VBS TRANSITION

Having established the validity of our sign-problem-free model in the limit where either the
spinons or visons are static, we now analyze the transition from VBS to antiferromagnetic
order, obtained by starting in the VBS phase and increasing J until the proliferation of current
loops destroys the effective dual Ising model.This is plotted across two slices, Kg = 1.4 in
Fig. 3.6 and K; = 1.2 in Fig. 3.7. We find that the loss of VBS order closely coincides
with growing antiferromagnetic order, indicating a direct transition. However, we emphasize

that the difficulties present in establishing the antiferromagnetic transition for Ky = 0 also
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persist for K; > 0 - the autocorrelation time for the antiferromagnetic order parameter s
quickly diverges as we approach the magnetically ordered phase, which prohibits us from
reaching larger system sizes. As a consequence, while we observe some signatures of a first-
order transition - including the Binder cumulant dipping below zero near the phase transition,
along with with a sharper upturn in s?> which may evolve into a discontinuous jump for larger
system sizes - our numerical results currently cannot definitely establish the nature of this

transition.
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Figure 3.6: We present measurements of the antiferromagnetic order parameter s and its

Binder cumulant, along with measures of the VBS order at the X and M points in the
Brioullin zone, at fixed gauge coupling K; = 1.4 as a function of J. The crossing of the
Binder cumulant at J. &~ 0.6 closely coincides with the loss of VBS order, suggesting a direct
transition between the two phases. On the right, we plot the equal-time dimer correlation
function x(k), demonstrating the loss of order at the M and X points for J > 0.6.

For even larger K4, we expect for current loops to proliferate at smaller values of J, as
the O(K,) energy penalty incurred by unsatisfied bonds in the dual Ising model can be
alleviated through the presence of current loops. In particular, as Kgq — 0o, we expect the
antiferromagnetic phase to persist for any non-zero value of J. This behavior was found in

an analogous simulation of an O(2) model on a square lattice [355], where the current loop
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Figure 3.7: We plot the same data as in Fig. 3.6, but for weaker gauge fluctuations, K; =
1.2. We note a larger gap between the vanishing of the VBS order and the appearance of
antiferromagnetic order, suggesting that the Zs spin liquid phase might persist in this region;
however, larger system sizes may yield a direct transition.

proliferation at K; — oo is a consequence of the superfluid instability of the Bose-Hubbard
model at half-integer filling to arbitrarily weak hopping. We intend to investigate this limit

further in future work, as specialized updates become necessary for large K.

3.5 OUTLOOK

In this work, we present an effective model of quantum antiferromagnetism on the triangular
lattice and demonstrate that it can be mapped to a classical sign-problem-free partition
function. This extends known duality mappings [106, 128, 355] and yields sign-problem-
free models for a broad class of systems, of which our effective model is only one example of.
Additional models are of interest for future research. In particular, our effective model may be
defined on a kagomé lattice, where a similar effective description of O(4)-symmetric bosons
coupled to an odd Zy gauge field exists [408]. Numerical studies of extended Heisenberg
models on the kagomé lattice [520] have given evidence for a “diamond” VBS order - it

would be fruitful to study whether such a VBS pattern can naturally emerge from Zs gauge

105



Chapter 3. Sign-problem-free effective models of triangular lattice antiferromagnetism

field confinement with a background Berry phase. As our mapping also applies to bosons at
generic fillings - not just a fixed background of one boson per site - it is also of interest to
study the effects that a Zo gauge field has on the phase diagram of the Bose-Hubbard model.
Recent experimental proposals [191] for realizing such models in quantum simulators make
this question of timely importance.

Additionally, there is much room for algorithmic improvements in Monte Carlo simulations
of these models. With the current system sizes accessible to us, we are able to establish
the existence of spin liquid, VBS, and antiferromagnetic phases. However, the nature of
the VBS to antiferromagnet transition is unclear; our results support a first-order transition,
but the small number of system sizes accessible to us along with a diverging autocorrelation
time leaves open the possibility of a continuous transition. Broadly-applicable techniques
such as parallel tempering and reweighting may somewhat improve numerical results, but
our classical model presents a fundamental complexity arising from the competition between
multiple types of degrees of freedom. We have implemented several global updates to improve
sampling, but we expect that more sophisticated sampling methods would have more success
in clearly resolving the putative DQCP. It would also be useful to consider formulations in
terms of alternate degrees of freedom. One of the difficulties that prevent robust global
updates is the geometric complexity in the model, where degrees of freedom effectively live
on sites, bonds, dual sites, and dual bonds. This is in contrast to J-current formulations
used for simulating NCCP! models [262], where all the degrees of freedom live on bonds and
good worm algorithms exist. We expect that a continuous-time generalization of this classical
model would also improve performance as well as remove Trotterization errors and connect

more directly to the underlying quantum model.
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I have no idea where this will lead us, but I have a
definite feeling it will be a place both wonderful and

strange.

Dale Cooper

Protection of parity-time symmetry in topological many-body systems:

Non-Hermitian toric code and fracton models

4.1 INTRODUCTION

Isolated systems are governed by Hermitian Hamiltonians, with real energy eigenvalues and
unitary time evolution. Nonetheless, non-Hermitian Hamiltonians [23, 34, 35, 37, 400], for
which eigenvalues may generally be complex, are also physically relevant as effective descrip-
tions of a large variety of different systems. For instance, they have been studied in the
context of biological [13, 330, 339], mechanical [36], and photonic [53, 76, 84, 137, 138, 148,
169, 190, 226, 252, 287, 331, 359-361, 380, 393, 403, 472, 508, 526, 532, 566] systems, elec-
trical circuits [40, 185, 430], cavities [44, 83, 111, 276], optical lattices [275], superconductors
[179, 180], and open quantum systems [72, 110, 285, 331, 347, 400, 423]. In the latter case, the
emergence of complex eigenvalues can be interpreted as arising due to dissipation. On top of
a complex spectrum, non-orthogonal eigenstates and exceptional points are unique features
of non-Hermitian Hamiltonians, with crucial physical consequences [56, 184, 233]. In the past
few years, there has been growing interest in the condensed matter community in studying

non-Hermitian generalizations of quantum many-body systems. Most of these recent efforts
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were motivated by the question of how to generalize topological band theory to non-Hermitian
systems [41, 551], uncovering a modified bulk-boundary correspondence [50, 129, 196, 239,
264, 274, 423, 530, 547] and topological classification [163, 240, 278, 284, 294, 444, 553, 569],
as well as exceptional nodal phases [61, 258, 322, 346, 402, 570]. Furthermore, there has
also been research on disordered systems [238, 307, 557, 559] and studies of non-Hermitian
physics where many-body correlations play a crucial role, such as non-Hermitian fractional
quantum Hall phases [550], Kondo physics [333], critical points [22, 177], and many more
[170, 171, 210, 289, 296, 308, 329, 536, 537, 556].

Among these models, a particularly important and commonly studied class of non-Hermitian
Hamiltonians is provided by P7T-symmetric Hamiltonians which are invariant under a com-
bination of parity and time-reversal. Despite being non-Hermitian, these Hamiltonians can
exhibit real spectra [34, 35, 37-39]. Intuitively, this may be attributed to a balance of gain
and loss between the system and its environment. Mathematically, the protection is related
to the fact that P77 symmetry implies that eigenvalues come in complex-conjugate pairs such
that isolated real eigenvalues cannot become complex immediately. When they “meet” with
another eigenvalue, they can either stay on the real axis or form complex-conjugate partners;
when the latter happens, P7T is said to be broken. Therefore, the analysis of PT-symmetry
breaking is particularly subtle in systems with (approximate) degeneracies.

For symmetry-imposed degeneracies, the reality of the eigenvalues can be simply protected
by the symmetry itself and the fact that eigenvalues must come in complex conjugate partners.
A priori, this is different for degeneracies related to intrinsic topological order [412, 529]: for
instance, the toric code model [244] has four ground states on a torus, that are guaranteed to be
(exponentially) close in energy, even if all unitary symmetries are broken; similar statements
apply to other spin-liquid phases. An even more dramatic ground-state degeneracy (GSD),
that scales exponentially with linear system size, is realized in fracton models—novel quantum
states of matter that are characterized by excitations with restricted mobility [338, 368].
Similar to spin-liquids, the GSD of fracton phases is topological in the sense that the different
ground states are locally indistinguishable. One might be tempted to conclude that turning
on a non-Hermitian, P7-symmetric perturbation in such systems will immediately lead to

complex ground-state energies. Contrary to these expectations, we demonstrate in this paper
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that the reality of the ground-state eigenvalues in these phases can be surprisingly robust
against a large class of such perturbations, even if all unitary symmetries are broken and in
the presence of exponentially many degenerate states.

More specifically, we study under which conditions the eigenvalues of a given (almost de-
generate) subspace of a Hermitian quantum system will stay real upon adiabatically turning
on a non-Hermitian perturbation such that the total Hamiltonian commutes with a general-
ized PT symmetry. Here, “adiabatically” refers to keeping the gap to all other states finite
and “generalized P77 indicates that P does not have to be spatial inversion, but might be
any unitary operator. We first discuss a general mathematical condition for the eigenval-
ues to stay real and, hence, P7 symmetry to be protected. We then demonstrate that this
condition has strong implications for the protection of P7 symmetry in the ground-state
manifold of systems with topological GSDs, taking the toric code [244], the X-cube model
[495], the checkerboard models [494, 495], Haah’s 17 CSS cubic codes [174], and the large
class of quantum fractal liquids of Ref. [549] as examples. It is found that P7 symmetry will
be preserved on systems with even linear system sizes, L;, (in some Haah codes, divisibility
by 4 is required) for a large class of perturbations, while it is generically fragile in systems
with odd L;.

We emphasize that understanding the preservation or breaking of P7 symmetry is not
only one of the central theoretical questions of P7T-symmetric quantum mechanics, but also
of practical relevance for experimental realizations and potential applications of effectively
non-Hermitian systems. We hope that our framework for predicting the stability of the reality
of eigenvalues and the presence or absence of exceptional points will provide greater control
over the effects of non-Hermitian perturbations, which is, e.g., important for the observation
of power-law oscillations [7, 393, 476, 528] and the potential applications as topological lasers
[26, 27, 466] and sensing devices [293, 516].

The remainder of the paper is organized as follows. In Sec. 4.2, we define the type of non-
Hermitian Hamiltonians we are interested in, P7 symmetry, and the more general condition
of pseudo-Hermiticity. We also discuss the general, mathematical condition for colliding eigen-
values to stay real. It is first applied to the toric code, in Sec. 4.3, to the X-cube, checkerboard
models, and Haah’s codes in Sec. 4.4, and finally to the fractal liquids of Ref. [549] in Sec. 4.5.
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A summary of our findings is provided in Sec. 4.6.

4.2 PSEUDO-HERMITIAN PERTURBATIONS

We start with a general explanation of the class of non-Hermitian perturbations under con-
sideration. To this end, let us first assume that our non-Hermitian Hamiltonian H admits a

complete biorthonormal eigenbasis {|v) , |¢)} [56], which means that

H‘¢n> = kb, |1;Z)n> )
H' |¢n) = Eyy |6n) (4.1)

This is equivalent to the statement that H is diagonalizable, which is a very natural assump-
tion for a generic (non-Hermitian) Hamiltonian of a physical system. Note, however, that
it can be violated, most importantly at exceptional points [184, 233], which we will discuss
separately below.

In the study of non-Hermitian perturbations to quantum systems, it is common to further
assume that these Hamiltonians are PT-symmetric [34, 35, 37-39], i.e., [H,PT]| = 0, where
P can be abstractly defined as any unitary operator that squares to 1, and 7T is complex
conjugation in a certain basis. Doing so imposes additional restrictions on the spectrum
of H. Eigenvalues must come in complex conjugate pairs, as H(PT) |[tn) = EX(PT) |1n).
Importantly, this means that if one starts with a Hermitian, P7-symmetric Hamiltonian and
applies a P7T-symmetric non-Hermitian perturbation, isolated eigenvalues cannot become
complex on their own—they must merge with another eigenvalue on the real axis before
becoming complex. This feature leads to the reality of energy spectra generally being robust
to sufficiently small P7-symmetric perturbations, although degenerate subspaces are not
necessarily protected from becoming complex. When PT [i,) o |1)y,), PT symmetry is said
to be “unbroken” and the associated eigenvalues are real. Once eigenvalues meet and become
complex, PT symmetry is “broken” and |¢,,) is not an eigenstate of PT any more.

In this work, however, we do not restrict ourselves to P7T symmetry, and instead impose

a closely related but more general condition of pseudo-Hermiticity [325-327]. A Hamiltonian
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H is pseudo-Hermitian if there exists a linear operator 7, which we will refer to as the metric
operator, such that

nHn~ ' = HT. (4.2a)

In this paper, we take H to consist of a Hermitian component, Hy, and a non-Hermitian

perturbation, €V, with magnitude that we control with € € RR:
H=Hy+e€V, H} = Hy. (4.2Db)

For the Hermitian part Hp, Eq. (4.2a) implies [, Hy] = 0, i.e.,, n is a symmetry of the
unperturbed Hamiltonian. We also take 1 to be unitary, so that Eq. (4.2a) is equivalent to
nHn' = HT. The purpose of this work is to derive and discuss general conditions under which
(certain physically relevant parts of) the spectrum of H in Eq. (4.2b) can stay real upon
adiabatically turning on e.

This condition of pseudo-Hermiticity (4.2a) is manifestly identical to P7T symmetry with
P = n~! provided H is symmetric, H = H”. In fact, it was shown [560] that any P7 symmet-
ric, finite-dimensional Hamiltonian is also pseudo-Hermitian. For this reason and since it does
not involve any anti-linear operators and, thus, does not require a choice of basis, we focus on
pseudo-Hermiticity in this work. Moreover, pseudo-Hermiticity gives a more systematic way
of constructing non-Hermitian perturbations € V' to Hermitian models: one can immediately
obtain all the possible choices of 77 as it has to be a symmetry of the unperturbed, Hermitian

part, Hy, of the model, which then specifies the suitable non-Hermitian perturbations.

4.2.1 PROTECTION OF REALITY OF ENERGIES

If H is pseudo-Hermitian, complex eigenvalues also must come in conjugate pairs, since the
combination of Eqs. (4.1) and (4.2a) implies Hn~ ! |¢,) = Efn~'|¢,). As is the case with
PT -symmetric perturbations, this means that if a non-Hermitian perturbation is applied, the
reality of isolated eigenvalues is stable to small pseudo-Hermitian perturbations. If a group
of eigenvalues are degenerate (or almost degenerate) under Hpy—as is common in models
involving symmetries or topological superselection sectors—they are generally not stable to

pseudo-Hermitian perturbations. In these cases, we identify two main mechanisms by which
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these degenerate eigenvalues can stay real under pseudo-Hermitian perturbations:

(I) The first method of ensuring degenerate eigenvalues stay real is simply to preserve the
degeneracy under pseudo-Hermitian perturbations. Pseudo-Hermiticity implies that if degen-
erate eigenstates are going to become complex, they must acquire imaginary parts with op-
posite signs. If one forces the (in general complex) eigenvalues to remain degenerate, this can
never be satisfied for a non-zero imaginary component, unless the eigenvalues meet with an-
other set of symmetry-unrelated eigenvalues. The latter, however, requires a sufficiently large
value of €, as symmetry-unrelated states are generically not degenerate for ¢ = 0. The symme-
tries enforcing the degeneracy can be unitary symmetries, fermionic time-reversal symmetry
[239], or even bosonic time-reversal symmetries unique to pseudo-Hermitian systems [424].

(II) The second mechanism is more subtle and our main focus in this work. If a pseudo-
Hermitian term breaks all symmetries protecting the degeneracy, the eigenvalue splitting will
generally be nonzero. This splitting can be either real or imaginary. However, one can show
that if all the eigenstates of Hy of the degenerate (or almost degenerate) subspace of interest
have the same eigenvalue under n, then this splitting will always be real. This mathematical
fact can be readily understood within the framework of G-Hamiltonian systems developed by
Krein, Gel’fand and Lidskii [152, 260] in the 1950s for the case of Hermitian 7. In Appendix
C.1, we provide a simple and physically insightful proof to all orders of perturbation theory
that works for 7 being Hermitian or unitary. Furthermore, our analysis shows that, if the
eigenvalues of 1 are identical, the projections of the associated eigenstates to the (almost)
degenerate subspace of Hy will be orthogonal to first order in € and to zeroth order in the
limit of a large gap to the rest of the spectrum; it also follows that, as long as the energetic
separation of the subspace of interest from the rest of the spectrum is sufficiently large, they
will be approximately orthogonal in the entire Hilbert space, even though the Hamiltonian is
not Hermitian any more. This is very different when the eigenvalues of 1 are not the same.
In that case, there can be exceptional points [184, 233], where the Hamiltonian is defective,
eigenstates coalesce and become identical, irrespective of how large the gap to the other states
of the system is.

Intuitively, this is related to the fact that the Hamiltonian restricted to the degenerate

subspace is Hermitian: denoting the degenerate eigenfunctions by |v¢;) and writing 7 [¢);) =
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e |1;), we have

Hy = (il H ;) 27 (s H ) = . (4.3)

The complete argument of Appendix C.1 involves constructing a full effective Hamiltonian

for the degenerate subspace, and showing that it is Hermitian via similar reasoning.

4.2.2 REMARKS ON CONDITION FOR REALITY

Some comments should be made regarding the possibility of multiple degeneracies and multi-
ple metric operators. In the case of a two-fold degeneracy, i.e., two eigenvalues being identical,
there are only two possibilities for the eigenvalues of n—either they both have the same eigen-
value under 7, or they are different. In the former case, the splitting is always real. In the latter
case, the energy splitting can be real or complex depending on the magnitudes of the matrix
elements in the effective Hamiltonian. When there are more than two degenerate eigenstates,
the full criteria becomes more complicated, as some eigenvalues may become complex while
others stay real. For a concrete system, it should always be possible to determine the nature
of the splitting through perturbation theory, using the methods described in Appendix C.1.
However, we note that it is always the case that if all the unperturbed eigenstates have the
same eigenvalue under 7, their energies will stay real.

One can also consider a case where there is a two-fold degeneracy, but multiple possible
choices of metric operators. If there are two metric operators, n; and 72, such that both eigen-
states have the same eigenvalue under 7; and different eigenvalues under 7, the degeneracy
can be protected as a consequence of the mechanism (1) above: S = n; 1772 is, by construc-
tion, a symmetry of H and if S |¢)1) = [i)2), the eigenvalues will remain identical for e # 0.
However, the pseudo-Hermiticity of H with respect to 1 can be broken without causing the
eigenvalues to become complex.

In this paper, we focus on the protection mechanism (II) for the reality of the eigenvalues,
i.e., on cases where pseudo-Hermitian perturbations break all the relevant symmetries, eigen-
value degeneracies are not preserved and hence the interplay between the metric operator and
the unperturbed eigenstates are important in deducing whether the energies stay real. The

general procedure for utilizing this phenomenon goes as follows. First, specify a subspace of
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Figure 4.1: (Top) The toric code is defined on a cubic lattice, with Pauli spins on each edge.
The Hamiltonian is a sum of stabilizers, consisting of either a product of X operators on a
plaquette (red), or a product of Z operators adjacent to a vertex (blue). We here show the
case L, = 3 and L, = 2. (Bottom) On an even-by-even lattice (depicted here for a 2 X 2
lattice), every site can be covered by a combination of non-overlapping plaquette operators
(red). The four sites that are seemingly not covered by plaquette operators are redundant
due to periodic boundary conditions. This covering is also possible with vertex operators.
The coverings of larger lattices can be accomplished by sewing together copies of this 2 X 2
covering—of course, this only works for even-by-even lattices.

interest, whose energies are separated from the rest of the spectrum. Next, identify the uni-
tary symmetries under which the subspace has a definite eigenvalue under. These symmetries
will yield a class of non-Hermitian perturbations—namely, those that are pseudo-Hermitian
with the symmetry as a metric operator—for which the degenerate eigenvalues will stay real.

This notion of stability is useful in quantum systems when the subspace under consideration
is well-separated from the rest of the spectrum. In the remainder of the paper we will be
concerned with gapped many-body systems with several degenerate ground states and discuss
under which conditions the ground-state energies can remain real, provided the perturbations

do not close the gap between the ground and excited states.

4.3 NoN-HERMITIAN TORIC CODES

We begin with a study of non-Hermitian perturbations to the two-dimensional toric code [244],
focusing on the reality of the ground-state subspace. Non-Hermitian generalizations of the
toric code [172, 308] or closely related models [170] have recently been studied; these works,
however, have a different focus and a systematic understanding of the stability of P7T sym-
metry or, more generally, of the reality of the spectrum in the ground-state subspace remains

unexplored.
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The toric code is defined on a square lattice, with Pauli spins on every edge, see Fig. 4.1.
We denote the number of sites along the x and y directions by L, and L, and focus on periodic

boundary conditions. The Hamiltonian is
H™ =—a) A.—B) B, (4.4)
c P

where we have introduced the vertex operators, A., which cover the four spins adjacent to a

vertex ¢, and the plaquette operators, B, which cover the four spins on a plaquette p,

A.=1[2z B,=]]x.

i€c 1€Ep

Unless stated otherwise, we will use & = § = 1. In accordance with quantum code terminology,
we refer to A, and B, collectively as “stabilizers.”

Each term in Eq. (4.4) commutes with the rest of the Hamiltonian, so the ground states
can be obtained by minimizing the energy of each operator independently. Any state |¢)
in the ground-state subspace satisfies A, [¢)) = By [¢)) = |¢). If defined on a torus, one can
define loops of Z or X operators that wind around either of the two cycles of the torus. These
logical string operators, that cannot be deformed to the identity by applications of stabilizers,
imply a fourfold degenerate ground state, with string operators acting irreducibly within that

subspace.

4.3.1 PSEUDO-HERMITIAN PERTURBATIONS

We are interested in pseudo-Hermitian perturbations to Eq. (4.4) and how they affect the

degenerate ground states. To this end, let us first focus on three possible choices of 7,

nzHXi,HYi,HZz-, (4.5)

where the product involves all sites of the system, and postpone the discussion of other options
to Sec. 4.3.4 below. One can easily check that [HTC, 7]] =0.
In contrast with many other features of the toric code, which only depend on the topology

of the manifold, the eigenvalues of the ground states under n in Eq. (4.5) are highly sensitive
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to the system size. On an even-by-even lattice, the entire ground-state subspace has the same
eigenvalue under 7. This can most easily be seen by the fact that n can be written as a
product of plaquette and vertex operators, and must give eigenvalue +1 in the ground-state
subspace as a result, see Fig. 4.1. This cannot be accomplished on any other lattice size for
the following reason: a straight line drawn along the = (y) direction going through the centers
of the plaquettes will intersect L, (L,) sites. If we attempt to cover the full lattice with
plaquette operators, the placement of an additional operator will always change the number
of covered sites on the line by an even amount. The same holds true for vertex operators
and lines drawn through the vertices. Therefore, if either L, or L, is odd, the full lattice can
never be assembled solely from stabilizers. The fact that n cannot be written as a product of
stabilizers is sufficient to show that not all ground states can have the same eigenvalue under
1. To see this, suppose that all ground states have the same eigenvalue under 7. If this holds,
then we can add 7 to the group of stabilizers of the toric code without modifying the GSD. If
7 is independent from the rest of the stabilizers, we arrive at a contradiction, since increasing
the number of independent stabilizers lowers the GSD.

The observation that all the ground states have the same sign under 1 can also be seen
by noting that n commutes with all the logical string operators on an even-by-even lattice,
which take the system between different ground states. On an odd-by-even or an odd-by-odd
lattice, n anti-commutes with at least one of the logical string operators, which in both cases
lead to two ground states having eigenvalue +1 and the other two having eigenvalue —1.

What sort of perturbations, €V, can we add to our Hamiltonian for which nVnf = V1?
Writing V' = 4O, this requires

n0 = -0y, (4.6)

which reduces to {n, O} = 0 for Hermitian O. Taking 7 to be the product of ¥ operators for
concreteness, this means that O can be a sum, O =), g:0¢, g+ € R, over terms O; which are
products of Pauli matrices, only constrained to contain an odd number of X; and Z;. This
includes a large class of perturbations such as random, planar fields, V' =14 .(gi1X; + gi3Z;),
9i1, gi3 € R, and highly non-local terms, such as i) R Xi XX, or ) 1 XYYy,

i<j<k 9ij i<j<k 9ij

gijk € R. Since each term satisfies Eq. (4.6) separately, there is no relation between the
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prefactors of the different terms required and we can think of them as random, non-Hermitian
disorder, that in general breaks all symmetries of the system (other than PT).

In combination with our results of Sec. 4.2, this implies that on an even-by-even lattice,
the ground-state subspace of the toric code remains real under the large class of pseudo-
Hermitian perturbations that satisfy Eq. (4.6) with n given by Eq. (4.5). As the eigenvalues
must stay real for small perturbations, they never exhibit any square root singularities [184]
and exceptional points are avoided in the ground-state subspace. This is verified by exact
diagonalization (ED) of the toric code spectrum in Fig. 4.2(a,b), where it can be seen that
the ground-state energies can only become complex when meeting with the excited states. As
such, the PT symmetry of the ground-state manifold is protected by the gap to the excited
states.

In contrast, on a lattice that is not even-by-even, the ground states generically become com-
plex immediately upon applying the same non-Hermitian perturbations. This sensitivity of
the ground state to the system size can be thought of as representative of the highly entangled
nature of the toric code ground states. Even if one was to consider arbitrarily large system
sizes, the toric code ground states are still able to “detect” whether the system size is even
or odd. A similar interpretation of this phenomenon is that even for local perturbations, the
order in perturbation theory in which the ground state energy splitting will occur necessarily
involves a non-local operator which winds around the torus and, as such, can be sensitive to
(the parity of) the system size.

This sensitivity to system size may seem surprising, as the toric code is a paradigmatic
example of topological order where physical features are only sensitive to the genus of the un-
derlying manifold. To reconcile this, we emphasize that these non-Hermitian features assume
the preservation of PT-symmetry or pseudo-Hermiticity, which is a common assumption for
non-Hermitian systems. Since the topological order of the Hermitian toric code would remain
even if this symmetry was broken, the phenomenon we observe is not topological in a strict
sense, even though it can be interpreted as arising due to the long-range entanglement intrin-
sic to topological order. In the following sections, we show that despite this, these features

are a robust property of the topological phase rather than a fine-tuned consequence of the
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Figure 4.2: Spectrum of the toric with non-Hermitian random field perturbation, i€, ; X,
where g; was initialized randomly according to a Gaussian distribution with mean and variance
1. In (a,b) and (c,d) we take the bare toric-code Hamiltonian (4.4) and the perturbed one,
Eq. (4.7) with Gaussian distributed h; (mean 0 and standard deviation 0.4), as starting point,
respectively. In (a,c), the real part of the energy is shown with red and gray referring to real-
valued ground and excited energy levels, whereas eigenvalues with a complex part (broken PT
symmetry) are indicated in blue. The corresponding imaginary parts can be found in (b,d)
with red indicating the ground states, defined as those four states with the lowest Re(E;).

exact solvability of Eq. (4.4).

4.3.2 STARTING WITH PERTURBED TORIC CODE

One might wonder whether the remarkable protection of P7T and reality of the ground-
state energies is just a consequence of the highly fine-tuned and exactly solvable toric code
Hamiltonian (4.4) or a more general property of the underlying topologically ordered phase.
To investigate this, let us take as our base Hamiltonian the toric code with some small
Hermitian perturbation, for example a field along the Z-direction with in general spatially
varying amplitude,

Hy=H"+> hiZ, hi€R. (4.7)

The perturbation in Eq. (4.7) forces us to choose n =[], Z; in Eq. (4.5), as it is the only one
that commutes with the Hermitian Hamiltonian. Note that, of course, a completely random
Hermitian field will break all symmetries and no 7 is possible; we are, however, not interested

in this case as the Hamiltonian would break PT ezplicitly and the question of whether it is
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broken spontaneously would become ill defined.

With the additional perturbation in Eq. (4.7), we no longer have exactly degenerate ground
states for e = 0, but a finite energy splitting that is exponentially suppressed by the system
size. The four low-energy states will still all be even under 7 for an even-by-even lattice, since
our perturbation respects the n symmetry. Consequently, the ground-state energies will stay
real, even when they “meet” each other at finite €, as long as the gap to excited states stays
finite. The protection of PT symmetry is, thus, a more general property of the underlying
phase with topological order. We also demonstrate this with a concrete example in Fig.

4.2(c,d).

4.3.3 EXCEPTIONAL POINTS

A surprising observation is that, while these Hermitian perturbations do not change whether
the ground states become complex, they do change the nature of how they become complex.
Non-Hermitian Hamiltonians can exhibit exceptional points [184, 233]. Here, the eigenvalues
coalesce, the matrix becomes defective, i.e., also the eigenvectors become degenerate, and the
eigenvalues exhibit a square-root singularity in the tuning parameter, in our case €, in the
sense that the difference of eigenvalues scales with y/e€y — €. This has crucial consequences, e.g.,
for the Green’s function that exhibits a pole of second order in addition to the conventional
first-order pole [184]. For pseudo-Hermitian or P7T-symmetric Hamiltonians, exceptional
points typically arise at the moment when two eigenvalues meet on the real line and become
complex. If we start with an unperturbed toric code on an even-by-odd lattice and apply
a non-Hermitian, pseudo-Hermitian perturbation €V, such as an imaginary transverse field,
the degenerate ground states can immediately become complex. However, this degeneracy is
not an exceptional point, since the degeneracy occurs in the Hermitian limit and must admit
a complete basis of eigenvectors. In contrast, if one first applies a Hermitian perturbation,
such as in Eq. (4.7), and then €V, we have verified by ED on a 2 x 3 lattice that the ground
states will form an exceptional point when they meet each other on the real line to become
complex, and the corresponding eigenstates become identical. We emphasize that this is true
for arbitrarily small Hermitian perturbations. This is in stark contrast to systems with even

L., Ly; here the ground-state energies must stay real for small perturbations, such that their
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splitting does not exhibit the characteristic square-root behavior o< 1/€y — €, and exceptional
points do not occur.

To illustrate this subtle behavior of perturbed systems with odd system sizes, let us take a
two-level system as an effective description of two ground states with opposite eigenvalue of
n meeting to become complex. Denoting Pauli matrices acting in this subspace by o ., we

have 7 = 0, and the most general pseudo-Hermitian Hamiltonian has the form

h = Eyl + Ao, +ie(cosa o, +sinaoy), (4.8)

with the real-valued parameters Ey, A, o, and ¢; the latter parameterizes the strength of anti-
Hermitian perturbations as before. Note that the model is PT symmetric only if 2a/7 € Z.
The right eigenvalues and eigenvectors of h in Eq. (4.8) are given by Ex = Eg 4+ VA2 — ¢2
and 1+ o (A £ VA2 = €2 jee’)T. The eigenvalues meet when € = +A and become com-
plex for |e] > |A|. When A = 0, however, this is not an exceptional point as ¥y —
(1, sign(e)e’*)T /y/2, forming an orthonormal basis, and AE = E, — E_ — 2|e| scaling
linearly with €, for A — 0. For A # 0, instead, we get ¢, — ¥_ when ¢ — £A, showing that
the matrix becomes defective, and the difference of eigenvalues scales as AFE ~ 2v/2¢0+/eg — €,
for € near ¢¢ = £A. It is also readily verified that the overlap, (¢4|¢+), with the corre-
sponding left eigenvector is non-zero except for the exceptional points € = +A # 0, where
it vanishes; this “self-orthogonality” rules out the construction of a bi-orthogonal basis as in
Eq. (4.1). In summary, we should think of the special case of vanishing splitting, A = 0 or
of the unperturbed toric code, as a fine-tuned limit where two lines of exceptional points,
e = +A, meet and give rise to a non-defective Hamiltonian, as required by Hermiticity.

We finally point out that this behavior is also visible on an even-by-even lattice when taking
into account the excited states: as can be seen in Fig. 4.2(b,d), the imaginary part of the
excited states that become complex at infinitesimal e scales linearly in €, whereas the PT

symmetry breaking at finite € exhibits the aforementioned square-root singularity.
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4.3.4 OTHER METRIC OPERATORS

So far, we have focused on the three different choices of 7 in Eq. (4.5), but there are in
principle many more possibilities for the bare toric code model (4.4), as it possesses many
other symmetries. Here, we argue that our choices of 7 are unique provided we assume our
anti-Hermitian perturbations can be disordered and are not required to have a specific spatial
structure.

As a starting point, one might use spatial symmetries—lattice translations 7} ,, four-fold

rotation Cy, and inversion I and combinations thereof. For instance, n = I with
IO, ' =0_, 0;,=X;,Y; Z, (4.9)

is clearly a symmetry, [H7C, I] = 0, and it is easy to see that all ground states have the same
eigenvalue under it for any system size (the same holds for T} , but not for Cy). However, it is
not a natural choice for a generic system with spatially varying Hermitian or non-Hermitian
perturbations, such as those discussed above. For example, for an imaginary field, V =
iy, Zi:l 9in(Xs,Ys, Zi)u, it would require g;,, = —g—;, and, hence, fine-tuning between
spatially distant sites. Not even a site-independent complex field is possible.

Having established that choosing an n which relates spatially distant sites requires fine
tuning, we focus on 7 that commute with all stabilizers separately. This requirement can
alternatively be thought of as a restriction to symmetries that are preserved in the presence
of spatial disorder in the couplings of the bare toric code, i.e., « = a. > 0, 8 = 5, > 0 in

Eq. (4.4). This leads to two distinct classes of possible 7, schematically given by
n= H(stabilizers) (4.10a)

or

n= H(stabilizers)(logical strings), (4.10b)

where “logical strings” stands for strings of X; or Z; operators along a non-contractible loop

of the torus connecting the different ground states.
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Clearly, the ground states will have the same eigenvalues under 7 in Eq. (4.10a) and, thus,
stay real. For even system sizes, 1 in Eq. (4.5) are of this form and, as we have seen above,
indeed admit a large class of non-Hermitian perturbations.

This is different for n of the form of Eq. (4.10b): the ground states will have different
eigenvalues under 1 and P7 symmetry is in general fragile. However, since n in Eq. (4.5) can
be written in the form (4.10a), it is clear that Eq. (4.10b) cannot be spatially homogeneous
on an even-by-even lattice, but must be distinct on a non-contractible loop around the torus;
the same must hold for the associated non-Hermitian perturbation, which requires, again,
significant spatial fine-tuning. Let us illustrate this latter point using the concrete example
of n = I[; Xi [ cp Zj, where P is a non-contractible closed path through the centers of the
plaquettes. In that case, an imaginary field, V' = i), Zi:l 9in(Xi,Ys, Z;) u, must satisfy
gi1 = 0 for i ¢ P and gio = 0, g;1 # 0 for i € P (note that g;; # 0 on P is required, as we
otherwise can simply choose n = [ [, X;, which is of the form of Eq. (4.10a), and all eigenvalues
stay real). In other words, the perturbation must have vanishing X components on all sites
except for a non-contractible loop with non-zero X components; again, not even a spatially
homogeneous perturbation is possible.

We conclude that, setting aside fine-tuned non-Hermitian perturbations with special spatial
structure along non-contractible loops, suitable metric operators are of the form of Eq. (4.10a)
for even-by-even lattices. As the ground states will always have eigenvalue +1 under any such

7, the reality of their eigenvalues and, thus, P7 symmetry are protected.

4.3.5 ARBITRARY SYSTEM SIZES

So far, we have focused our attention on even-by-even lattices since the homogeneous metric
operators in Eq. (4.5) can be written as a product of stabilizers, while this is not possible on
even-by-odd or odd-by-odd lattices; nevertheless, if one naively applies the covering shown in
Fig. 4.1 on these lattices, one can obtain a modified metric operator 77, defined as the product
of Pauli operators, X;, Y;, or Z;, on all sites except for a single line (in the even-by-odd case)
or two lines (in the odd-by-odd case) that wind around the odd lengths of the torus. In other
words, 7 in Eq. (4.5) is necessarily of the form of Eq. (4.10b) on a lattice with at least one of

L, L, odd. Based on our previous discussion, this implies that the reality of the ground-state
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eigenvalues and P7T symmetry are generically fragile on even-by-odd and odd-by-odd lattices.

We finally mention, for completeness, one less general but potentially useful immediate
consequence. As follows from using 77 as metric operator, any pseudo-Hermitian perturbation
€V with anti-Hermitian part, e(V — V1) /2, that has support only in a subregion of the system
that is contractible around the odd lengths of the torus, will leave the ground-state eigenvalues

real.

4.4 NON-HERMITIAN FRACTON MODELS

Our analysis of the toric code carries over to many well-known fracton models in three di-
mensions. Fracton models [54, 74, 174, 300, 338, 368, 450, 454, 494, 495, 549] constitute a
unique phase of matter, characterized by excitations with restricted mobility, either by be-
ing immobile or only mobile in certain directions. These systems are typically gapped and
have GSDs exponential in linear system size. In this section, we analyze various models with
fracton order—namely, the X-cube model, checkerboard model, and Haah’s codes—and show
that, like the toric code, the full ground-state subspaces are stable against a large class of
non-Hermitian perturbations provided the linear system sizes along all directions are even.
Unless stated otherwise, we take 7 to be defined in the same way as in Eq. (4.5), i.e., as a
product of X, Y, or Z operators over all qubits in the system; as motivated in Sec. 4.3 above
in the context of the toric code, these n provide the largest class of allowed non-Hermitian

perturbations by virtue of being spatially homogeneous.

4.4.1 X-CUBE MODEL

The X-cube model [495] is defined on a cubic lattice, with qubits living on the edges of the

lattice. It has a Hamiltonian composed of mutually commuting terms

HY=-)"A. - > > Bi (4.11)

1=x,Y,z v

where A, = [] X is the product of X operators on the 12 edges of the cube labelled

jEIC
by ¢, and B! is a vertex operator, composed of four Z operators at vertex v in the plane

perpendicular to the i’th direction. On an even-by-even-by-even lattice, our 7 operators in
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Eq. (4.5) can be assembled from these terms, thereby showing that the entire ground-state
subspace has eigenvalue +1 under 7, see Fig. 4.3. An identical argument as in the toric code
case implies that n cannot be assembled from stabilizers on a lattice with any odd length. In
combination with the fact that it commutes with all stabilizers A., BY separately, it must be
of the form of Eq. (4.10b) for odd system lengths, with “logical strings” here referring to the
logical string-like operators of the X-cube model.

By our analysis of the toric code, this immediately implies that the X-cube ground states on
an even-by-even-by-even lattice stay real under the non-Hermitian perturbations permitted
by n, which includes the application of imaginary transverse fields, non-local terms like the
ones considered for the toric code, and many others. One can check that all other features of
non-Hermitian toric code perturbations, such as their additional stability against real pertur-
bations and the ability to add contractible perturbations on lattices with odd system sizes,
also hold. However, these features are more striking for fracton models: instead of a four-
dimensional code subspace being protected against these perturbations, fracton models have a
GSD that grows exponentially with system size; for the X-cube model on a three-dimensional

torus, the GSD obeys

logy GSD = 2L, + 2L, + 2L, — 3.

The reality of the code subspace in the presence of pseudo-Hermitian perturbations holds
for the X-cube model defined on general three-dimensional manifolds [450], provided the full
space can be covered by plaquette or star operators.

This sensitivity to system size may be surprising, since the X-cube model exhibits foliated
fracton order [450]. This means that the length of any of the sides of the X-cube model can
always be extended by attaching layers of toric code and applying a series of local unitary
transformations. In Appendix C.2, we present a detailed study of how the metric operators
1 behave under foliations. The end result is that, while the ground states can be extended
by this foliation procedure, the foliation acts non-trivially on 7, meaning that the interplay

between 1 and the X-cube ground states can change depending on the system size.

124



Chapter 4. Protection of parity-time symmetry in topological many-body systems:
Non-Hermitian toric code and fracton models

Figure 4.3: For the X-cube model defined on an even-by-even-by-even lattice (shown here for
2 X 2 X 2), the full lattice can be covered by non-overlapping plaquette operators (red). The
lattice can also be covered by vertex operators. Although this is more difficult to visualize,
it can be generated by covering each 2D layer in a definite plane by a toric code covering.
The remaining sites on the edges connecting these 2D layers can then be covered by chains of
vertex operators.

4.4.2 CHECKERBOARD MODEL

The checkerboard model [495] is another example of a system with fracton excitations. This
model has spins defined on the vertices of a three-dimensional cubic lattice, as opposed to
the edges. By separating the cubes of the lattice with alternating labels A and B, each
forming a three-dimensional checkerboard lattice, and denoting the cubic operators [[;cs, Zi

and Hie ge Xi as Z. and X, respectively, the checkerboard model is given by the Hamiltonian

HY=-Y"Z.-) X (4.12)

ceEA ceEA

The geometry of the checkerboard model requires it to be defined on an even-by-even-by-even
lattice if periodic boundary conditions are imposed, since otherwise one cannot uniformly
partition the cubes into A and B labels. On even-by-even-by-even lattices, the entire lattice
can be covered by non-overlapping stabilizers, and therefore the ground-state subspace is

even under any 7 in Eq. (4.5). Again, this implies that the ground-state energies of the
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checkerboard model always remain real under non-Hermitian perturbations that are pseudo-
Hermitian under n. Although only small system sizes are accessible via ED, we have checked
these predictions numerically for the checkerboard model on a 2 X 2 X 2 lattice.

A Majorana version of the checkerboard model has also been studied [494], which simply
replaces the Pauli spins with Majorana fermions +;, i.e., the model has one Majorana fermion
per site 4 of the cubic lattice. By defining [[;..7 = 7., the Hamiltonian of the Majorana

checkerboard model is

H=-> 1. (4.13)

ceA
Because the entire lattice can be covered with ~.c4, all ground states of the system are even

under the operator

n:H717
%

which can be interpreted as the total fermion parity, n o Ha(cha —1/2), when combining
pairs of Majorana fermions into auxiliary complex fermions c,. Therefore, the ground states
remain real under perturbations of the form e, where each term in O contains an odd number
of Majorana operators, i.e., changes the total occupation of auxiliary complex fermions by an

odd amount.

4.4.3 HAAH’S CODES

Finally, we consider Haah’s 17 CSS cubic codes [174], all of which are defined on a cubic lattice
with two qubits per site . Each cube has two stabilizers: one is built up of tensor products
of Z and 1 operators on each site ¢, such as Z; ® 1; or Z; ® Z;; the other one involves tensor
products of X and identity operators, e.g., X; ® 1;. The exact form of the stabilizers differs
from code to code, but all have a sub-extensive GSD. We defer a more detailed discussion
of these codes to Appendix C.3—our conclusion is that, with the choice of 1 analogous to
Eq. (4.5),

n=[[xiexi [[viev. [[Zze %, (4.14)

the behavior of the code subspace under pseudo-Hermitian perturbations is sensitive not

only to whether the system lengths are even or odd, but also whether the system lengths are
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divisible by 4. Moreover, since not all cubic codes are symmetric under rotations, this behavior
is dependent on which directions are even or odd, and which are divisible by 4. This admits
eight different classes of codes, based on the relation between their code subspace stability
under pseudo-Hermitian perturbations and their system sizes. These classes range from cubic
code 7, whose code subspace stays real on all system sizes other than odd-by-odd-by-odd, and
cubic code 17, where the code subspace only stays real if L., L, are divisible by 4. We refer

to Appendix C.3 for a complete characterization of this behavior.

4.5 NON-HERMITIAN QUANTUM FRACTAL LIQUIDS

In this section, we will generalize the previous analysis to also include another class of frac-
ton models dubbed “quantum fractal liquids” [549] and reformulate the criterion of stability
against non-Hermitian perturbations using a polynomial representation of Pauli operators.
In this way, we will recover the criterion of stability of the toric code in an algebraic way
and show that the reality of eigenvalues of the exponentially large number of ground states

of quantum fractal liquids is protected against a wide range of non-Hermitian terms in the

Hamiltonian.

4.5.1 POLYNOMIAL REPRESENTATION OF OPERATORS

To set up the notation, we will briefly introduce the polynomial representation of operators,
a commonly used technique [302]. To this end, consider a polynomial of three variables, x, v,

2,

ik
f= Z cim 2’y 2", cjre = 0,1,
4,k LE

over [Fo, meaning that all coefficients are to be understood modulo 2. This allows to define a
corresponding Pauli operator whose components lie on the vertices of a cubic lattice in three
dimensions in the following way

z(f) =1z X =[[x5%"

ke ke
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Here Zjie (Xjre) is the Z (X) operator acting at vertex (j,k,¢). For example, a stabilizer
of the checkerboard model, given by the product of Pauli matrices on the eight vertices of a
cube, corresponds to the polynomial f = 14+2+y+z+2y+yz+2xz+2yz. On a finite lattice,
periodic boundary conditions are specified by imposing zl+ = ylv = 2L+ = 1. We denote the

! and likewise for y and z, by f.

dual of f, obtained by taking x — x~

Certain relations can be expressed more concisely with this polynomial representation.
Translating an operator Z(f) one lattice site along the x-direction is simply given by Z(xf),
and likewise for translations in the y and z-direction. Additionally, the polynomials defined
over o naturally encode the commutation relations of the Pauli operators. To see this,

consider the commutation polynomial, defined as fg for two polynomials f and g. Writing fg

as

f7=) " digra'y’2F,

ijk
dij = 1 (0) implies that Z(f) and X (2'y/2*g) anti-commute (commute).
Quantum fractal liquids are defined on a cubic lattice with two spins on every vertex. The

form of their stabilizers is given by [549]

(4.15)
a=1-f(z)y, B=1-g(2)z,

and translations thereof, where the two arguments of Z and X denote operators on the
two distinct spins per site. Different choices of polynomials f and g define different models.
Clearly, all stabilizers commute, as follows from the associated commutation polynomial,

af + Ba = 2a8 = 0.

For codes defined by stabilizers of this type, the logical operators take the form

49 = 20,2 f(w,y), 17 = Z('g(,2),0), (w.16)
4.16
09 = X(2'f(2,9).0), Y = X(0,27g(x, 2)),

)
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for integer ¢ = 0,1,..., Ly, — 1, where we define
Ly L.
=Y g=> (g2 (4.17)
k=1 /=1

It is straightforward to verify that the operators in Eq. (4.16) commute with the stabilizers

and constitute logical operators if

flv=1, ¢ =1 (4.18)

There are various ways to satisfy Eq. (4.18): the “trivial” solution, that works for any set, L,,
Ly, L., of system sizes, is f = g = 1. This corresponds to layers of toric code in the (¥,z) plane,

upon noting that the bond variables of the toric code, see Fig. 4.1, can be seen as two qubits
(2,X)

i

per vertex. In this case, ¢ and rz(Z’X) in Eq. (4.16) become Z-, X-type string operators in
the ith layer along the y and Z direction, respectively. Another way of satisfying Eq. (4.18) that
works for arbitrary isotropic system sizes, L, = L, = L, = L, is f = 2"/, g = 2™9. However,
the largest class of possible polynomials f, ¢ and, thus, possible models is allowed in the
isotropic case with L = 2"~ since Eq. (4.18) will hold as long as f(1) = g(1) = 1 [549]. Here,

”

we refer to the latter set of models as “quantum fractal liquids,” which have been shown to

exhibit exponential scaling of the GSD, obeying log, GSD(2L) = 2log, GSD(L) [549]. Note,
however, that the absence of string-like logical operators and mobile quasiparticles further
requires that f and g are not algebraically related, i.e., that there are no integers n; and no
such that f™ = ¢g"? (neglecting periodic boundary conditions). An example of a model free

of string-like logical operators is provided by f =1+ z + 2% and g = 1 4+ z + z5.

4.5.2 PSEUDO-HERMITIAN PERTURBATIONS

As before, we are interested in adding pseudo-Hermitian perturbations to this class of models

that will leave the ground-state subspace real. We take 71 to be defined analogous to Eq. (4.14)
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or, in polynomial representation,

n=Z(h,h), X(h,h), iX(h,h)Z(h,h),
Lac Ly Lz (419)

h— Z Z ij—lyk—lzﬂ—l'

j=1k=1¢=1

Any 7 in Eq. (4.19) will commute with all stabilizers (4.15). This readily follows from the
associated commutation polynomial upon noting that h = h is invariant under multiplication
by any monomial, physically related to the translation invariance of 7, and that the number
of monomials in both f and g must be odd. The latter is a consequence of Eq. (4.18) and of
the observation that the parity of the number of terms of a polynomial f over 9 is the same
as that of any of its powers, f™ with n > 0.

Based on our discussion of Sec. 4.2, we want to analyze under which conditions the ground-
state subspace is even under these operators to guarantee that their eigenvalues stay real.
Previously, we had verified this by attempting to assemble 7 via the stabilizers of the model.
In the set of models introduced above, the polynomial representation makes it easier to instead
verify whether 7 commutes with all the logical operators (4.16), which in turn implies that all
ground states have the same eigenvalue of 7 [and that 7 is of the form of Eq. (4.10a) rather
than Eq. (4.10b)].

The condition for 1 to commute with all the logical string operators is given by

hg = hf =0, (4.20)

for any of the three possible choices in Eq. (4.19). This simple expression arises from the fact
that » = h and that the logical operators come in exactly the form of operators relevant to
the commutation polynomial, so one can verify that n commutes with all the string operators
with one equation. It would technically suffice for hg and A f to be only a function of y and
z, since one is only concerned with the commutations of operators like Z(h) and X (z°f), but
not those with relative shift along the 7 or z directions. However, recalling that h is invariant
under multiplication by any monomial, there is no way for g or f to conspire to cancel out

only the terms independent of y and z in hg and hf without simply giving 0.
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Another important consequence of h being invariant under the multiplication by any mono-
mial is that Eq. (4.20) is satisfied if and only if f and g contain an even number of monomials.
As argued above, Eq. (4.18) implies that f, g and, therefore, also f", ¢" must contain an odd
number of terms. Taken together, Eq. (4.20) is obeyed and, thus, the reality of the eigenval-
ues of the ground states is protected against pseudo-Hermitian perturbation with n given in
Eq. (4.19) if Ly and L, are even. Note that the x-direction is distinguished from the other
two directions in this criterion, a reflection of the fact that the stabilizers given by Eq. (4.15)
also distinguishes the z-direction.

Let us illustrate this for the different special cases of f and g noted above. Taking f =g =1
corresponds to L, uncoupled layers of toric code and the above statement implies that the
toric code is protected if and only if the number of sites in each in-plane direction is even,
reproducing the result of Sec. 4.3. Our current formalism, however, captures many more
cases. For instance, we immediately conclude that any model with f = 2™, g = 2™ and
L, =Ly, = L, = L is protected only for even L. As the two polynomials are algebraically
related, this two-parameter family of models is characterized by string-like logical operators
and has excitations mobile along the direction ng,y—n ¢z [549]. Finally, as already noted above,
quantum fractal liquids with arbitrary f and g, only constrained by f(1) = ¢g(1) = 1, are in
general defined on lattices with an even number of sites and, as such, are always protected

against pseudo-Hermitian perturbations with metric operator in Eq. (4.19).

4.6 SUMMARY AND CONCLUSIONS

In this work, we studied the behavior of the eigenvalues of quantum many-body Hamiltonians
of the form of Eq. (4.2), i.e., starting from a Hermitian system, Hj, we turn on a non-
Hermitian perturbation, €V, and demand that the entire Hamiltonian be pseudo-Hermitian.
Using pseudo-Hermiticity rather than P7 symmetry is related to the fact that the former
is more general than the latter [560]; we note, however, that all of the explicit examples
considered here are both P7 symmetric and pseudo-Hermitian. We analyzed whether the
energies, F;, of a given subspace of interest of Hy will remain real as long as the gap to

other states of the system is finite (P7 symmetry protected) or whether they can move into
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the complex plane without closing the gap (P7T symmetry fragile). While symmetries can
enforce degeneracies (E; = E;) and protect eigenvalues from becoming complex in conjunction
with pseudo-Hermiticity (E; = E7), we discussed that this is also possible in the absence of
symmetries: if the eigenvalues of the metric operator n are the same for all states in the
subspace of interest, F; are guaranteed to stay real and PT symmetry is protected.

We demonstrated that this criterion can be readily applied to various paradigmatic many-
body models with crucial implications. As a first example, we took the toric code model (4.4)
as unperturbed Hamiltonian, Hy. On a torus, it exhibits four degenerate ground states and
one would generically expect them to become complex when turning on V. However, we
have shown that n of the form given in Eq. (4.5) allows for a large class of non-Hermitian
perturbations; these are shown to leave the ground-state energies real on an even-by-even
lattice, even if all symmetries are broken. They can only become complex and P7T can only
be broken in the ground-state subspace, when the gap to the excited states closes. In fact,
we have argued that any sufficiently generic non-Hermitian perturbation (see Sec. 4.3.4) in
a system with both linear system sizes even (at least one of them odd) will only allow for n
of the form of Eq. (4.10a) [of the form of Eq. (4.10b)] and the ground-state eigenvalues are
protected (not protected) from becoming complex. This sensitivity to system size reflects the
highly entangled nature of the toric-code ground states.

We came to the same conclusions for the ground-state manifolds of the X-cube (4.11), the
spin (4.12) and Majorana (4.13) checkerboard models, and for the fractal liquids of Ref. [549].
In these cases, the stability of PT symmetry is even more surprising due to the enormous
GSD that grows exponentially with system size. For Haah’s 17 codes, the stabilizers have a
slightly more complicated form and the minimal requirement for stability differs from code
to code, although we observe several groups of codes which all obey the same requirements.
This classification of Haah’s codes based on stability of P7T symmetry approximately follows
previous classifications based on entanglement renormalization [115].

On a more general level, our work illustrates that P77 symmetry and the reality of energies
can be protected in the degenerate ground-state manifold of correlated many-body systems
with different forms of topological order—even in the absence of any symmetries and although

exceptional points are generically expected to be ambundant [296]. By virtue of being exact
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and simple, our framework can be readily applied to a large class of systems and provides a
systematic method for constructing pseudo-Hermitian perturbations that ensures the reality
of the resulting eigenvalues. This is not only relevant for experimental studies [7, 393, 476, 528]
and potential applications [26, 27, 293, 466, 516], but might also help deepen our theoretical
understanding of non-Hermitian systems hosting exotic phases of matter, e.g., by providing
novel ways of classifying spin-liquid or fracton phases according to their sensitivity to such

perturbations.
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It’s about control or lack thereof

A twist of fate, a change, a reversal

Sprain, The Lamb As Effigy

An exactly solvable dissipative spin liquid

5.1 INTRODUCTION

Quantum spin liquids (QSLs) are exotic phases of matter characterized by emergent anyon
excitations with non-trivial braiding statistics, in conjunction with the absence of any con-
ventional long-range order [57, 251, 427]. Further interest in these states have grown due to
their potential applications for use in fault-tolerant quantum computation [107, 479] through
their non-local encoding of quantum information.

The interplay between QSLs and open quantum systems has been an active area of research
for many years, with a primary focus on the robustness of their information storage and on
approaches to detect their presence when perturbations generic to experimental realization are
introduced, such as a non-zero temperature, decoherence, and more [6, 58, 229, 231, 343, 364,
432, 572]. Rather than taking this approach of considering generic forms of decoherence, we
instead consider engineering a particular form of environmental coupling to a QSL in order
to realize unique non-equilibrium physics. This general approach of leveraging dissipation
has been shown to be efficient at preparing quantum states [31, 109, 259, 267, 509] including
topologically-protected edge modes [110]. Recent applications of this idea to spin liquids [201,

543] have yielded new insights into the behavior of emergent anyon excitations in the presence
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of dissipation.

We study a quantum spin-3/2 model on a two-dimensional square lattice, which is a par-
ticular limit of the QSL studied in [546], and subject it to a certain choice of Markovian
open dynamics generated by the Lindblad equation. We show that in a particular limit, the
Lindbladian becomes exactly solvable through a parton construction. As such, exact state-
ments about its steady-state solutions as well as transient behavior can be made. Exactly
solvable Lindbladians have been studied previously using techniques such as third quantiza-
tion [372, 428, 468], Bethe ansétze [104, 311], operator-space fragmentation [133], and through
parton constructions [447] similar to our own. From a practical perspective, this exact solv-
ability is especially useful as the wealth of analytic tools developed to approximately study the
low-energy behavior of Hermitian Hamiltonians do not immediately carry over to these non-
Hermitian Lindbladians, although several methods for approximately studying the spectrum
of Lindbladians have been developed [243, 394].

A particular property of our exact solution that we emphasize is the existence of dis-
tinct quasiparticle excitations of the Lindbladian when viewed as an effective non-Hermitian
Hamiltonian acting on an enlarged Hilbert space. We advocate for this as a powerful tool for
understanding the non-equilibrium behavior of a generic state or density matrix as it equili-
brates to its steady-state solution. We show that the imaginary energy gap associated with
a particular type of quasiparticle excitation in this enlarged Hilbert space can be associated
with the equilibration timescale of the expectation value of a certain class of observables.
These classes of observables turn out to have a close relation to excitations of the correspond-
ing unitary spin liquid. An expert reader might immediately want to inspect Sec. 5.5 for a
summary of the spectrum. Importantly, the different time scales of these classes of operators
have different parametric dependence on the strength + of the coupling to the environment,
which can be found simply by diagonalizing a quadratic Hamiltonian numerically, or in some
cases is derived exactly analytically. For instance, in the limit of small 7, a certain set of
operators, that are not conserved by the unitary dynamics, decay rapidly on a scale set by
the exchange coupling rather than + itself. Fractionalized string-like operators that can be
interpreted as pairs of emergent Majorana fermion excitations in the unitary system, how-

ever, survive up to a time-scale < 1/v. After that, also the Majorana fermions heat up and
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only gauge-invariant fluxes of the emergent gauge fields or Wilson-loop operators remain in
their original configuration. In this sense, our model realizes a three-step and exactly solvable
analogue of the “fractionalized pre-thermalization” discussed recently [225] for stroboscopic
time-evolution in the Kitaev model.

The remainder of the paper is organized as follows. A mathematical definition of all the
involved operators and of the dissipative model we study can be found in Sec. 5.2. We
derive an interpret the spectrum of the Lindbladian in Sec. 5.3. A discussion of perturbations
away from the exactly solvable point and a conclusion are provided in Sec. 5.4 and Sec. 5.5,

respectively.

5.2 MODEL

The time evolution of a density matrix p can be described in its most general form by a
completely-positive and trace preserving map ®(p) — p’. The Lindblad equation [166, 288] is

the most generic continuous Markovian map satisfying these properties,
do_ . ilH, LjpL} LTL
=Ll = p—i—Z JiPLy — S LiLyp (5.1)

where the quantum jump operators L; parameterize the nature of the environmental coupling.
One may express the superoperator £ as an operator in a “doubled” Hilbert space, namely
the Hilbert space of all operators. For a choice of basis in the original Hilbert space, 1), i =
1...D, we can represent any operator O = 3, O;; [¢;) (5] as astate [|O) = > Oy [1i)®|¢h;)
in this doubled Hilbert space, with inner product (O1]|Os) = % tr ((9102). Within this

doubled Hilbert space, the action of the Lindbladian superoperator is
iL=Hygol-1®Hlg+> i7L; @ L,
! (5.2)
He = H = Z LiL
We will take L; to be unitary, such that H.g = H up to an overall imaginary constant.

This doubled Hilbert space construction is a powerful tool for characterizing the behavior of

mixed states; notably, it has seen recent use in diagnosing the stability of quantum information
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stored in mixed states [28, 269]. For a quantum spin model in two dimensions, it is instructive
to think of this doubled Hilbert space as corresponding to a bilayer system, where the first
(second) layer corresponds to the bra (ket). In this scenario, the Lindbladian consists of two
copies of the Hamiltonian +H acting on each of the two layers, with anti-Hermitian couplings
7y Zj L;® L} between the two layers. To better connect with intuition from unitary time
evolution, we will focus on the eigenvalues of the matrix i£ rather than £ and refer to iL as
“the Lindbladian”; in this convention, the imaginary components of eigenvalues correspond to
dissipation, and the non-existence of exponentially growing solutions requires the imaginary

part to always be negative.

5.2.1 UNITARY TIME EVOLUTION

The Hermitian dynamics that we consider is a particular limit of an exactly solvable quantum
spin-3/2 model on a square lattice first studied in [546]. We define this model here and review
some properties of its solution, as our results are most clearly stated within this framework.
Due to the four spin polarizations per site, we may express the spin-3/2 degrees of freedom
in terms of anticommuting Gamma matrices I'*, a = 1...5, which obey {Fa, It } =26%. In

terms of the physical spin operators,

Fl_\}g{sy,sz}7 F2_\}§{Sz,sx}7
s — \}g{sxysy}, = \}g [(SI)Q _ (Sy)Z] ’ (5.3)
= (52— .

We emphasize that the key property needed in our construction is the presence of five anti-
commuting Gamma matrices. This can alternatively be accomplished by a pair of spin-1/2
operators (or qubits) on each site. In this approach, there are multiple ways of constructing

anti-commuting Gamma matrices. One possible representation is

M=5"ws", I?=5"%s5Y,
MP=5"9s*, IM=5%"w1l, (5.4)

M=5wl.
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The choice of representation will influence the physical interpretation of the dissipation, as
will be discussed later. Additional choices are discussed in Appendix D.1.

The Hamiltonian is defined on a square lattice as

H=3% [chFjl-F?% - JZJF?F?J@}
J

(5.5)
+ 3[BT 4 P - s 3T
J J

where F;-‘b = [I‘?, Fﬂ /2i. For simplicity, we will assume that the lattice has an even number
of sites in both the Z and ¥ directions. The exact solvability of this model is a consequence
of an extensive number of conserved fluxes,
_ 13123 pld 24
Wj - Fj Fj+irj+§rj+§+§v <5'6)
and can be understood most conveniently by performing a Majorana decomposition of the I'

matrices; specifically, one employs the representation

. 5 .
F?:zcgdj, F? :zc?d;, w=1,2,3,4, (5.7
5 .
with the constraint —ic%c?c?c?djd;- = F}I‘?F?F?F? = —1. In this representation, the Hamilto-

nian can be rewritten in terms of static Zy gauge fields w;  living on the bonds of the lattice,
which come from conserved bilinears of the cy operators, coupled to two species of Majorana
fermions, d; and d;.

We will not give a detailed review of the various properties of this solution [546], as it will
not be important for our analysis. However, we will emphasize the relation between these
emergent degrees of freedom and physical observables, as the results of our dissipative model
concisely fit into this picture. The Zy gauge fluxes - products of closed loops of w; , operators
- correspond to the conserved fluxes W;. Pairs of Majorana fermions coupled by a string of

Zy gauge fields are given by strings of I' matrices. For a pair of d excitations, the operator
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can be generated by a string of bond operators:

112 _
I‘jI‘ﬂ@ a=1zx,

‘/jza - (58)
314 _
Uilig @=v.
A similar construction follows for a pair of d’ fermions,
rr#d_ o=z
JoitE '
Vj”a = (5.9)
35745 _
Uil =y,

as well as the combination of a d and d’ fermion, a special case of which is F? = z'djd;.
Note that a closed loop of either the Vj, or Vj’@ operators is equivalent to a product of the
conserved fluxes contained inside the loop.

In order to retain the exact solvability upon the inclusion of dissipation, we take J. =
J:L// = Js = 0, which causes the bond operators Vj’7 o, to become conserved quantities. In the

Majorana fermion language, this limit quenches the dispersion of the d} fermions and the

ground state becomes highly degenerate as pairs of d; may be added in at no energy cost.

5.2.2 JUMP OPERATORS

We now introduce jump operators L; = I‘?. Note that our Lindbladian jump operators com-
mute with the conserved flux, [L;, Wy] = 0. This property implies that the flux operators
W; constitute strong symmetries of the system, as defined in [60], and means that an initial
state with a definite flux configuration will remain in such a configuration. If we express our
Hermitian model as free Majorana fermions coupled to a static Zo gauge field, the interpre-
tation of this phenomenon is that the gauge fields will remain static under the Lindbladian
time evolution while generically we expect the Majorana fermions to evolve to resemble a
finite-temperature Gibbs state. One may think of this behavior as “fractionalized thermal-
ization.” For a generic set of quantum jump operators that commute with W;, we expect
the steady-state solutions of the Lindbladian can be represented as the tensor product of a

thermal Gibbs state of Majorana fermions with a pure state of Zy gauge fields. We note
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Figure 5.1: In the doubled Hilbert space representation, the Lindbladian super operator
possesses two types of conserved fluxes. The first are intralayer fluxes W; g, W; 1, which
correspond to physical conserved plaquette operators. The second, Uj «, have a purely super-
operator interpretation, as explained in the main text.

related work studying the separation of thermalization timescales in fractionalized excitations
on the Kitaev honeycomb model [225] under stroboscopic time evolution, as well as more
directly analogous work studying the Kitaev honeycomb model coupled to jump operators
that commute with the conserved fluxes [201]. Apart from fluxes being exactly conserved
under dissipative dynamics, we also uncover below an additional, less apparent regime of
fractionalized thermalization in our exactly solvable model, which occurs in the limit of small
dissipation.

The above discussion follows for any jump operator that commutes with the conserved
fluxes, and remains true even away from the limit J, = Jz’/ = Js = 0. However, our particu-
lar model admits additional conserved quantities which render the full dissipative dynamics
exactly solvable. To see this, we use the doubled Hilbert space formalism, see Eq. (5.2), to
express the Lindbladian superoperator as an operator acting on a bilayer spin-3/2 system,
with Gamma matrices I'y ,I'? for the two layers - the R, L subscript indicates that they
correspond to the right and left action of the gamma matrices on the physical operator. The

Lindbladian can be written as

iL = H[Tg) — H[T1] +iy Y T35, —iyN, (5.10)
J

where N is the number of sites. This bilayer representation makes it clear that, in addition to

the intralayer fluxes W; g, W which are defined in analogy to Eq. (5.6) and commute with
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the Lindbladian separately, we have a new set of conserved interlayer fluxes U; o = V]’7 o RV}C oL
defined on the plaquettes connecting the two layers, shown in Fig. 5.1. These conserved
quantities are “weak” symmetries [60]. In contrast to the strong symmetries generated by the
flux operators W, the operators VJ’ « do not commute with the jump operators L; individually,
and it is exclusively the conserved superoperator consisting of the simultaneous right and left
action of V}, that commutes with the Lindbladian.

We comment here on the physical interpretation of the jump operators F? in terms of
the microscopic degrees of freedom. If our Gamma matrices are built out of pairs of spin-
1/2 operators, I = S* ® 1 and our dissipation should be thought of as an asymmetric
dephasing acting on only one of the two spin-1/2 degrees of freedom. For spin-3/2 operators,
I'® = (9%)? — 3, which acts as a dephasing term between the S* = i and the $* = +3

states.

5.2.3 PARTON CONSTRUCTION
To elucidate the exact solvability of this model, we represent the Gamma matrices in terms
of six Majorana fermions,

FiR = Z.C?»Rdj’R’ F;ﬁ% - Z.CZRd;,R7 n= 1 ’ 2 ) 3747 (5 11)

5 9. U
U r=1djrd; R,

with an analogous representation for I'; in terms of cé.i 1 »dj.1,dj . This enlarges our Hilbert

; : c4_ a1 2 3 4 gy _pl 12 73 4 15
space, which necessitates the constraint —zcijc%ch’ch’Rdj,Rdjﬁ = Fj7RFj7RFj’RFj7RI‘j7R =
—1 on all physical states, and likewise for the I';, operators.

In this representation, the Hamiltonian H[I'r] becomes

H[CR] = Joljq ridj rdj iz 1 + Jyjy ridj Rdj 5.1 (5.12)
i

/\' — . 1 2 /\‘ — . 3 4 o . . . _
where wj . r = —icj p¢j ;g and Wiy r = —i€j pC; o p are conserved quantities with eigen
value +1. An analogous rewriting follows for the Hamiltonian on the second layer. Observe

that the Majorana fermions d& R d;-7 ; drop out of the intralayer Hamiltonian entirely. As a
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result, the interlayer coupling also becomes quadratic in the Majorana fermions,

ivy T5pl = —i)_ djrd;pdjpd),
i i

(5.13)
= -7 Z vjd; rd; L,
J
where v = —id} pd} ; is a conserved quantity with eigenvalue £1. With this rewriting,

our model becomes one of free fermions d; g ,d; ; hopping on a bilayer square lattice in the

presence of a background Zj gauge field W Rr,Wjq,r,0; living on the links. Written out

explicitly,
iL = > se [JoWjaeidiediiae + Jy@yeidied;ige) =7 Y Gdjrdjn —iyN  (5.14)
(=L,R j j
where s; = 1, sg = —1. This Lindbladian possesses a local Zy gauge symmetry, given

by the transformation dj, — Ajedje, Wjae — AjWjarNjrae V; — AjrvjAj R, where
A; ¢ = £1. The gauge-invariant fluxes around a single intralayer plaquette gives the conserved
quantities —W; g, —W; r, and the fluxes around an interlayer plaquette gives the conserved
superoperator —Uj .. Note the relative minus signs between the two quantities - as will be
relevant later, working in a sector with U;, = 1, which is the sector where steady-state
solutions will belong to, requires us to pick a gauge configuration such as v; = (—1).

In order to obtain physical states, we must project back to our physical (doubled) Hilbert

1+Dj 0
2

space. This is obtained by the projection operator P =[] iy , where

_ 1 2 3 4 '
Dje= _ch,ﬁcj,écj,éCj,zdj,ﬁdjj- (5.15)

A careful analysis of this for a single-layer Hamiltonian was performed in [546] and our analysis
proceeds along similar lines. We can write P = P'(1+ D), where D = [[;,Dj, and P’ is a
linear combination of all inequivalent gauge transformations. Since D? = 1, [D, L] = 0, this

means that we must restrict ourselves to eigenstates with D = 1. We write

D=1] @ ][5 []idsrdjr- (5.16)
j

j7a7€ ]
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In order to more readily leverage the gauge constraint, we re-express the Majorana fermions
djr,djr in terms of complex fermions. A representation that will prove to be useful for

future analysis is

fi =¥ (djr +i(—1)d;R) /2. (5.17)

‘ te
With this, Qf;rfj — 1= (-1)idjd;r and (—1)N7 = (—1)%i i = [1;idj rdj r. Therefore,
gauge invariance restricts the total fermion parity, (—1)"V/, to equal the total “gauge parity,”

Hj,OL“LL wjvoé7u H] Uj-
5.3 SPECTRUM OF THE LINDBLADIAN

In the previous section, we have shown that our Lindbladian reduces down to one of free
fermions coupled to a static Zs gauge field. As such, the full spectrum and eigenvectors can in
principle be calculated - analytically for translationally-invariant gauge field configurations,
and by diagonalizing a non-Hermitian single-particle Hamiltonian for more general gauge
configurations. However, the interpretation of these properties must be done in terms of
density matrices of our physical Hilbert space, rather than a more conventional analysis of

Hermitian systems. We outline our general approach to understanding these properties below.

5.3.1 GENERAL REMARKS

The most important eigenstates of the Lindbladian are those with eigenvalue zero, which cor-
respond to steady-state solutions. Since the eigenvalues \; of the Lindbladian obey Im[)\;] < 0,
every initial density matrix will eventually evolve into some superposition of these steady-state
solutions (for simplicity, we we ignore the possibility of solutions with purely real eigenvalue,
i.e. density matrices that do not decay but whose phase oscillates in time, as these are not
present in our spectrum). Our first task will be to find these steady-state solutions and
understand their properties.

Ascertaining the properties of these steady-state solutions is a non-trivial task within the
doubled Hilbert space formalism. Given a density matrix ||p)), the expectation value of a
Hermitian operator A is given by Tr [Ap] = ((A]|p)). As such, standard intuition for calculating

observables of pure states in ordinary Hilbert spaces, (¢| A |¢), is not applicable here. While
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it is possible to develop the machinery to perform such calculations, we instead proceed
with a more intuitive symmetry-based analysis. The exact solvability of our model provides
an extensive number of superoperators that commute with the Lindbladian, and hence ||p))
will be an eigenstate of them. By decomposing our Hilbert space into subspaces with definite
eigenvalue under these superoperators, we can conclude that ((A||p)) must vanish unless the two
have the same eigenvalue. In general, this symmetry analysis only gives us limited information
about ||p)). However, the extensive number of conserved quantities makes this perspective
especially powerful for our model, and we will find that only a small amount of additional
analysis is required to fully characterize the steady-state solution.

After characterizing the steady-state solutions, we will analyze the dissipative solutions -
operators with eigenvalue )\; obeying Im \; < 0. We will be interested in eigenvalues whose
imaginary components have the smallest magnitude, which defines the Liouvillian gap, and
a corresponding timescale associated with the decay to the steady-state solution. As the
spectrum of our Lindbladian has the interpretation of fermions coupled to a Zs gauge field,
we find it insightful to define distinct types of Liouvillian gaps depending on the nature of the
excitation. For example, one may inquire into the Liouvillian gap with respect to fermionic
excitations, or with respect to gauge excitations (visons). This is not an arbitrary labeling,
the motivation for which ties back to our symmetry-based analysis of steady-state solutions.
Excitations within a given sector will have different eigenvalues under the symmetries of our
Lindbladian, and hence can be characterized by distinct classes of observables that have a non-
zero overlap with these excitations. The corresponding Liouvillian gap for these excitations
specify a timescale which governs the rate at which the expectation values for these classes
of observables asymptote to their steady-state solutions. We note that a similar hierarchy
of timescales was recently studied in random local Liouvillians [504] and in fact observed in
simulations on a quantum computer [457] - in this model, the separation of timescales was
associated with differing spatial extents of operators. A symmetry-based analysis of the low-
energy properties of the Lindbladian spectra has also been recently leveraged in Brownian
circuits to construct an effective hydrodynamics description of the real-time dynamics [344]

To be more explicit with our perspective, consider a steady-state solution ||pss)) and a dis-

sipative solution ||a)) which we interpret as a quasiparticle excitation of type a. A physical
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density matrix can be constructed by [|pa)) = [[pss)) + cl|a)), where ¢ is some constant chosen
to ensure Tr [p3] < 1. This density matrix asymptotes to ||pss)) at late times but displays
transient behavior dictated by |a)) up to a timescale t, = —Im[)\,]~!. It is useful to charac-
terize this operator a in terms of observables {O,} such that Tr [O,a] # 0, in which case one
can say that the expectation value of observables O, relax to their steady-state values with
a timescale dictated by t, for the density matrix ||pg). Of course, a generic initial density
matrix will be more complicated than ||pg); however, if ||a)) is the lowest-energy excitation
that has a non-zero overlap with the observables O,, then t, provides an upper bound on the
equilibration timescale for the expectation value of these observables.

The utility of this picture is contingent on the operators O, having a sufficiently simple
representation. As we will show, these different classes of observables are most conveniently
stated in terms of fractionalized operators acting on the original Hilbert space, such as the
bond operators in Eq. 5.8 and Eq. 5.9. In other words, we demonstrate a close connection
between fractionalized excited states in the doubled Hilbert space formalism and fractionalized
operators in the physical Hilbert space, with the imaginary energy of the former defining the
equilibration timescale of expectation values of the latter.

We note an emerging body of work [175, 268, 323, 324] which take a conceptually related
stance to our own, which is that the Liouvillian gap does not solely determine the relax-
ation time of a dissipative system to its steady-state solution. These works noted that an
anomalously small overlap between left and right eigenmodes of the Lindbladian - induced,
for example, through a non-Hermitian skin effect - can enhance the relaxation time of the
system. While we have verified numerically in our model that no such small overlap is present,
we note the similarity with our work in that the structure of the eigenvectors, rather than
purely the energy gap, can qualitatively change the nature of the relaxation process. In our
case, certain long-lived eigenmodes only have an effect on distinct classes of observables, which

we identify by leveraging the extensive amount of symmetries present in our model.

5.3.2 STEADY-STATE SOLUTIONS

We now study the properties of the steady-state solutions. Recall that for isolated systems

with similar Hamiltonians (free fermions coupled to static Zg gauge fields), there is a theorem
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due to Lieb [283] for bipartite lattices that fixes the gauge flux sector in which the ground
state resides in. In a similar spirit, we leverage general arguments given in [60] that allow us
to deduce gauge flux sectors which support steady-state solutions.

A fact that we will use in this argument is that any dissipative eigenstate of the Lindbladian
must have zero trace - if it had a non-zero trace, the dissipative nature implies that the trace
would decay in time, contradicting the trace preservation of the Lindbladian time evolution.
Hence, the search for steady-state solutions can be recast as a search for eigenstates with
a non-zero trace. This comes with the caveat that we may miss steady-state solutions that
happen to also have zero trace; however, we explicitly diagonalize the Lindbladian for a 4 x 4
lattice in each gauge sector and have found no such solutions.

We first constrain the interlayer fluxes Uj o, which constitute weak symmetries. Recall that
the superoperator Uj , acts on density matrices as Uj o [p] = VJ’ aijf o An eigenstate of Uj
with non-zero trace must have eigenvalue 1, since unitarity and Hermiticity of VJ’ ., implies
Trlp] = Tr [VJ’ PV a}. Hence, we will constrain ourselves to the U;, = 1 sector.

We now turn to the “strong” symmetries W;. A similar argument as the last paragraph
implies that we must constrain ourselves to sectors where W;pW; = p. However, recall that in
the doubled Hilbert space formulation, the right and left fluxes (W} g and W} 1) are conserved
separately. Hence, our analysis only constrains the eigenvalues of W) g and Wj 1 to be the
same. This is actually not a new constraint - the product of fluxes around any closed surface
must be +1, so the constraint that all U; , = +1 automatically implies W; p = W; .. We will
denote this choice of W) g, W; 1 eigenvalue as W to distinguish from the operator W,. One
can prove, as in Appendix A of [60], that at least one steady-state solution exists for each
choice of eigenvalue.

Translating the above statements to our gauge field representation, we fix our gauge sector
to be Wj o r = Wja,L = Wje and 0; = (—1)7. The complex fermion representation chosen in

Eq. 5.17 makes the Lindbladian in the steady-state gauge sector especially simple, as

2(f1f,,5+ fl,2f;) = idjrdjiz.p — id;Ldjia1

2f f; = 1— (=1)7idjrd; .

(5.18)
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Figure 5.2: In the steady-state gauge sector, where all interlayer fluxes are set to +1 and
intralayer fluxes are equal on the two layers, the bilayer Majorana Lindbladian can be directly
mapped onto a model of complex fermions on a square lattice coupled to a Zs gauge field on
the links and with an imaginary chemical potential.

where an identical relation as in the first line but for & <> 7 also holds. As a consequence, the

Lindbladian takes the simple form
ie =3 (Soiaf]fym + yigf S5+ bc)

! (5.19)
—2iv Y fl;,
J

see Fig. 5.2. The non-Hermiticity of ¢£ is manifest as simple imaginary chemical potential,
and we can immediately identify the steady-state solution as the f;r vacuum state. The real
part of the dispersion is unaffected by the dissipation, and all excitations come with the same
dissipative energy penalty 2+.

What are the expectation values of observables in these steady-state solutions? Recall that
these solutions have eigenvalue 1 under the symmetries U, and W;grW, . Any observable with
a non-zero expectation value with respect to this steady-state must have identical eigenvalues.
Phrased in terms of operators on our original Hilbert space, the requirement is that observables

must commute with the flux operators W; and the bond operators Vj’a. This is a strong
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constraint - the only operators that satisfy this condition are precisely products of the Vj,
bond operators defined in Eq. 5.8. One can check explicitly that these operators satisfy the
required constraints, and the claim that these are the only operators with such a property
follows from dimension counting, worked out in Appendix D.2. Physically, these correspond
to all operators that can be expressed in terms of pairs of d; Majorana fermions connected
by strings of Zy gauge fields Wjq.

We now argue that among these operators, only closed loops of Vj, operators have a non-
zero expectation value - recall that these correspond to products of flux operators W;. This
is a consequence of the steady-state solution being the vacuum state of the f;-r operators,
which gives an additional set of constraints: (1 — 2 f; Iillle) = llp). We can turn this into a

gauge-invariant statement by the following rewriting

lp) = (=1)7(1 — 2] ;)53 0)
= dj,Rdj,Ldg,Rd},L”P» (5.20)

p) -

_ 15 5
=15R0G L

Hence, any non-zero observable must have eigenvalue 1 under the symmetry F?’ RF?, . (e,
they commute with F?), and these are precisely closed loops of Vj, operators. Using the
fact that the steady-state solution obeys the relation W r||p) = W; rllp) = W;||p), we can
deduce that the expectation value of the flux operators in this steady state are given precisely
by the intralayer gauge fluxes Wj.

When our model is defined on a torus, the steady states of our Lindbladian exhibit a four-
fold topological degeneracy arising from the possibility of flipping non-contractible loops of
Wj o operators, shown in Fig. 5.3. Physically, this implies four distinct steady-state density
matrices p1_4 for each local flux configuration, which are distinguishable based on the expec-
tation values of non-contractible strings of I' matrices. We emphasize that, while this may
be thought of as a topological degeneracy - and more generally, Zy topological order - within
the doubled Hilbert space formalism, it does not constitute true mixed state topological order
in the sense of being able to encode logical qubits in the steady-state solutions. What may

appear to be a “quantum” superposition of different topological sectors ||p1)) + ||p2) within
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Figure 5.3: When our model is defined on a torus, one can flip non-contractible loops of
intralayer gauge fields in order to obtain a set of four steady-state solutions with equal flux
configurations.

the doubled Hilbert space formalism translates to a mere classical superposition of density
matrices p; + pe within our original Hilbert space (moreover, the relative phase between the
superposition of the two steady-states is not freely tunable - it is fixed by the Hermiticity and

positive semi-definite constraint on the physical density matrix).

5.3.3 LIOUVILLIAN GAPS

Moving beyond steady-state solutions, we can calculate the Liouvillian gap - the energy of the
next-lowest state in imaginary energy. It is useful to draw a distinction between different types
of Liouvillian gaps. The three types of degrees of freedom in our Lindbladian are complex
fermions f;, interlayer gauge fields v, and intralayer gauge fields @; o r, Wj,. Excitations
with respect to any of these three variables may be considered. Recall from Eq. 5.16 that

gauge invariance requires an even number of excitations.

o Within a gauge field configuration with a steady-state solution, we compute the fermion
gap, which is the energy associated with a fermionic excitation. In accordance with the
condition of gauge invariance discussed previously, any valid state must include a pair

of these excitations.

e We also compute the effects of interlayer gauge excitations, which corresponds to the
energy associated with flipping a single v; away from the “checkerboard” sector. We

call this the interlayer gauge gap.
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o Finally, we analyze intralayer gauge field excitations, which come from flipping a single
wj 1, operator. We choose left gauge fields for concreteness - an identical calculation

follows for right gauge fields.

We will study each of these excitations in turn. In addition to calculating their Liouvillian
gaps, we also identify operators whose equilibration timescales can be upper bounded by these
gaps. We make this identification primarily through the symmetry-based analysis outlined
previously in Section 5.3.1. To be precise, each of these excitations will be associated with a
particular flux configuration, and the excitations can therefore only have a non-zero overlap
with operators whose eigenvalues under the flux superoperators are identical. This analysis
is robust and can be applied to any excitation; however, for interlayer gauge excitations, we
will find that the nature of the fermionic degrees of freedom allows us to say more about the

structure of the long-lived excitations.

FERMION GAP

We first study the Liouvillian gap associated with fermionic excitations within the steady-
state gauge sector. As is clear from Eq. 5.19, the fermion gap is always 2v, and a pair of
these excitations will cost energy 4. As these excitations remain in the same gauge sector,
they will still have eigenvalue 1 under the symmetries U; o, W; gW; 1. Recalling the relation
between f; and the Majorana fermions in Eq. 5.17, we see that this fermion gap of 4y defines
the inverse timescale under which the expectation values of pairs of d; fermions will asymptote
to their steady-state value of zero. The fact that also the Hermitian part of i£L, the first line
in Eq. 5.19, is quadratic means that the (in general @;, dependent) exact eigenstates of the
Lindbladian in the steady-state gauge sector and the time-dependent phases they pick up are
characterized by all possible occupation numbers of the N Bloch states of the f; and their
band structure; the associated decay rate is just given by 2+ times the number of occupied

Bloch states.
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INTERLAYER GAUGE EXCITATION

Creating an interlayer gauge excitation at site k gives us the free fermion Lindbladian

iL = Z (Jx@j,fc\f}fjJrf + Jyﬁ)\j:@\f}fj+f] + hC)
; (5.21)
—2iy Y f1f; =2 = fl£,).

J#k

The structure of the Lindbladian is the same for multiple interlayer gauge excitations - the
chemical potential at each site is changed from f,i [y to (1 — f,lL f;.)- A single one of these flips
is not gauge-invariant; one must either flip an additional gauge degree of freedom or add in an
odd number of fermions in order to recover a physical excitation. The Liouvillian gap for these
excitations must be computed numerically since, as opposed to Eq. 5.19, the Hermitian and
anti-Hermitian part of ¢£ do not commute anymore. However, we can readily see analytically
that this gap vanishes in the limit of strong dissipation, v — oo. In this limit, we ignore
the Hermitian terms in Eq. 5.21 and we can obtain steady-state solutions by simply placing
fermions wherever the imaginary chemical potential is negative (this automatically satisfies
the gauge constraint, as we place as many fermions as we flip v;’s).

For general 7, the gap of interlayer gauge with fermion excitations (i.e., flipping a single
Ux, and introducing a single fermion to the vacuum) is plotted in Fig. 5.4. For this and all
subsequent plots, the parameters used were J, = J, = J = 1, and N = 1600. The gap depends
on the background W; flux configuration - we present results for zero flux, W; = +1, m-flux,
W; = —1, and a random flux configuration. Note that there are two distinct contributions to
the Liouvillian gap in Eq. 5.21. The first is the overall shift of 2ivy, and the second comes from
the dissipative strength of the fermion excitation with the smallest imaginary energy. For
small v, the imaginary energy of this fermion excitation is positive - in other words, adding
in the single fermion excitation to the vacuum is energetically unfavorable and causes the
eigenstate to decay more rapidly, but one is nevertheless forced to include it by the constraint
of gauge invariance. This fermion excitation energy eventually transitions from positive to
negative, asymptotically approaching —2:+.

Depending on the background flux configuration, the fermion spectrum may exhibit an
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anti-PT-symmetry breaking transition at a critical value of -y, which causes a sharp kink
in the gap. In this situation, the eigenvalues with the smallest imaginary part for small
come in pairs, with the real parts opposite in sign - this symmetry is a consequence of the
Lindbladian descending from a completely positive and trace-preserving quantum channel and
can be expressed in terms of modular conjugation [237]. The anti-P7-symmetry breaking
transition happens when the two eigenvalues meet on the imaginary axis and split off. We
see that in Fig. 5.4, this happens for both the uniform flux as well as the particular random
flux configuration plotted, but not for the m-flux scenario. A survey of generic random flux
configurations suggest that this transition is common but not necessarily guaranteed. As
this symmetry-breaking transition pertains to dissipative rather than steady-state solutions,
the physical consequence of the transition are more subtle, although in principle it may be
detected by longest-lived mode in this sector transitioning from having a real (oscillatory)
component to being purely dissipative.

What is the physical interpretation of these interlayer gauge excitations? As was the case
in the steady-state gauge sector, we can proceed with a symmetry analysis of the operators
in this sector. In terms of gauge-invariant fluxes, the flip of a single v; away from its steady-
state checkerboard configuration changes the fluxes of the four neighboring Uj , operators to
be —1. Hence, operators that have a non-zero overlap with this excitation must have identical
eigenvalues under these flux operators. Recall that in the steady-state sector, the operators
that satisfied the flux constraint consisted of pairs of d; fermion excitations connected by
a string of gauge fields W; . An interlayer gauge excitation at site k£ “pins” a dj, fermion
excitation to site k, and the allowed operators are gauge-invariant string-like operators that
involve a d; fermion at site k. Therefore, the Liouvillian gap in Fig. 5.4 determines the
equilibration timescale of operators given by a single d’ fermion coupled to a d fermion by a
Zo Wilson line.

The above argument applies to all operators in this gauge sector, regardless of their energy.
In the limit v — oo, we can also analytically understand the nature of the lowest-energy
(i.e. the longest lived) operator in this sector. For an interlayer gauge excitation at site k,

the steady-state solution obeys fli frll¥) =1 and f; fill)) = 0 elsewhere. By leveraging this
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Figure 5.4: We plot the Liouvillian gap associated with the flipping of a single interlayer gauge
degree of freedom v for various different background flux configurations. All configurations
have a quantum Zeno limit as v — co, where the Liouvillian gap vanishes and a new steady-
state emerges. For comparison, we also plot the fermion gap of 4 and note that the interlayer
gauge gap has an identical slope at small ~.

constraint using analogous manipulations as in Eq. 5.20, we find that this is only satisfied by
the operator I'?, which can be interpreted as the bound state of a d and d’ fermion localized on
a single site [cf. Eq. 5.7]. Hence, in the limit v — 0o, we recover steady-state excitations with
definite I'® eigenvalue. This is a consequence of the quantum Zeno effect; if we interpret the
jump operators L; = FJE-‘ as the environment performing measurements of I'> with frequency
specified by v, our state can become frozen in a I'® eigenstate for large 7.

The interpretation of the lowest-energy excitation as a FZ operator also holds approximately
away from the v — oo limit, which is a consequence of the localization of the corresponding
single-particle eigenvector of Eq. 5.21 around site k. As shown in Fig. 5.5, the fermion with
smallest imaginary eigenvalue is highly localized around site k even for small values of ~;
hence, the operator whose equilibration time is determined by Fig. 5.4 retains a large overlap
with Fz. We leave a detailed analysis of the extent of eigenvector localization for future work,
although we mention related work [486] of a similar single-particle system but with a fully
disordered imaginary chemical potential, rather than our case of a chemical potential that
is everywhere positive expect for a single site. For their model, numerical simulations were
consistent with a localization transition for arbitrarily weak disorder strength.

The above analysis has been for a single interlayer gauge field excitation. It is natural to

consider multiple gauge excitations, which correspond to symmetry sectors with multiple v;
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y = 1.5, uniform flux y = 0.5, uniform flux y = 0.5, m flux = 0.5, random flux

Figure 5.5: We plot the spatial distribution of the magnitude of the lowest-energy fermion
excitation of the single-particle Lindbladian in Eq. 5.21, with the single interlayer gauge defect
in the center of the lattice. For large « (top left), the eigenstate is highly localized at the
defect site, irrespective of the background flux configuration. For smaller -, the eigenstate
remains well-localized, and the spatial distribution around the defect site is dependent on the
background flux.

gauge fields flipped away from their steady-state configuration. A physically relevant quantity
to consider is the Liouvillian gap associated with the f vacuum in the sector with a pair of
interlayer gauge field excitations at sites k and ¢. This determines the equilibration timescale
of an operator given by a pair of d’ fermions at sites k and ¢. This state is an exact eigenstate
of the Lindbladian with imaginary energy 4 - note that for sufficiently large ~y, this energy
may be reduced further by including pairs of f fermions, with a quantum Zeno effect yielding

a steady-state solution at v — oo by adding a pair of fermions at sites k and /.

INTRALAYER GAUGE EXCITATIONS

The final types of excitation we will study are intralayer gauge excitations, when we flip a
gauge field on one of the two layers such that Wy, o,1, = — Wy, o, for some bond (k, ). Operators
associated with these excitations - i.e., operators consistent with this flux configuration - are
single-site operators F?, w=1,2,3,4, on the two sites adjacent to the bond (k,«). A more
precise identification of these operators, including the flux configurations corresponding to
operators F? % and Ff Y, are given in Appendix D.4.

In this gauge sector, the Lindbladian no longer has a simple expression in terms of complex
fermions fj , as the intralayer gauge excitation induces pairing terms into the Lindbladian -
explicitly,

2 <f;f;+a + fj+afj> = —i(=1) (dj,cdjsz.1 + dj rdjy5.R) (5.22)
The single-particle Lindbladian is quadratic and can thus still be easily diagonalized; we
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provide more details of this procedure in Appendix D.3. However, the determination of
whether the resulting ground state is physical - i.e, whether it has the odd fermion parity to
not be annihilated by the projection to the physical subspace - is non-trivial due to the non-
Hermiticity of the Lindbladian. We leave a full analysis of this problem as an open question
and plot both the ground state energy and the energy of the first excited state in Fig. 5.6.
The ground state energy gives a lower bound on the physical Liouvillian gap. However, one
must be careful at large v, since the v — oo limit gives a fictitious quantum Zeno effect. In
this limit, the ground state approaches the f; vacuum state, which is a steady-state solution
but unphysical as its fermion parity is even. As a consequence, we also plot the first excited
state, which gives a more physical lower bound for large ~.

We comment on a surprising aspect of this Liouvillian gap, which is a sudden increase
when an arbitrarily small « is turned on, with a subsequent plateau at a gap of magnitude
J. For finite N, the gap smoothly evolves as a function of v, but the slope at small v is
proportional to N, as shown in the inset of Fig. 5.6. This indicates that in the thermodynamic
limit, an infinitesimally small v causes a discontinuous jump in the Liouvillian gap to J. A
possible physical explanation of this fact is that, in contrast to the fractionalized operators
considered earlier which have a correspondence with coherent excitations of the closed system,
the operators F;’2’3’4 have no such association, and hence deconstructive interference generated
by the unitary dynamics of the closed system also contributes to the decay of the expectation
values of these observables. Intuition on this phenomenon can also be gained from the fermion
representation - by examining the single-particle eigenstates of the Lindbladian at v = 0
expressed in the complex fermion representation, one can see that the act of exchanging a
single hopping term with a pairing term causes strong hybridization between the delocalized
particle-like and hole-like excitations, which in turn leads to an extensive O(7) shift in the
Liouvillian gap when dissipation is turned on. This phenomenon of the decay rate approaching
a non-zero value as 7 — 0 in the thermodynamic limit has been found in the Lindladian
dynamics of Sachdev-Ye-Kitaev models [263, 404],

This observation demonstrates a striking feature of our model in the small-y limit. In
this regime, the expectation values of string-like operators such as Vj, as well has F? have an

O(’y_l) upper bound on their equilibration timescale, in contrast to local single-site operators
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Figure 5.6: We plot the Liouvillian gap associated with flipping a single intralayer gauge field
away from a uniform flux configuration. As it is non-trivial to ensure that the ground state
configuration has the proper fermion parity necessary for gauge invariance, we plot both the
lowest energy configuration as well as the energy of a state with a single fermionic excitation,
with the latter giving a more physical lower bound in the v — oo limit. The Liouvillian gap
for small v has a large slope, and a finite size analysis (inset) shows that this slope is extensive
in the system size. We plot results for a uniform flux configuration, where the behavior of the
gap in the thermodynamic limit appears to take a particularly simple form - an immediate
jump up to a gap of magnitude exactly J and a plateau up to v. = J/4, after which the gap
scales linearly in . For generic background flux configurations, we verify that the qualitative
nature of the gap remains the same, although the precise coefficients are non-universal.

such as F;’2’3’4 whose timescales are bounded by O(J _1).

5.4 PERTURBATIONS AWAY FROM EXACT SOLVABILITY

As the exact solvability of our Lindbladian requires a precise set of couplings, it is natural to
consider perturbations away from this exactly solvable point. Here, we discuss different types
of perturbations and their physical effects. Our Lindbladian possesses an extensive number
of strong symmetries W; and weak symmetries V; . The combination of the two gives us our
exact solvability, and perturbations are conveniently classified in terms of their breaking of
these symmetries.

The simplest perturbations retain both the strong and weak symmetries of our system.
These terms are rather artificial - the most local terms consist of either explicitly adding in
the flux terms W; to the Hamiltonian, or adding a two-site jump operator L;, = Vj .. Both
these choices preserve the steady-state solutions as well as the structure of the quasiparticle

excitations; however, details of the Liouvillian gaps will be modified.
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Perturbations that break the weak symmetries but preserve the strong symmetries of our
model include the J, J;, and Js terms in the full Hamiltonian of Eq. 5.5. In this case,
our quantum jump operators still commute with the fluxes W), and an initial state in a
definite flux sector will remain in that sector for arbitrary time. However, while we can still
make statements about the steady-state solutions of the Lindbladian, the full spectrum and
consequently the Liouvillian gap is no longer analytically tractable in an exact way. For future
work, it would be interesting to study whether coherent quasiparticle excitations still remain
in this spectrum at low energies. Recall that in the exactly solvable limit, the existence of
distinct types of quasiparticle excitations led to the interpretation of distinct Liouvillian gaps
which give equilibration timescales for different observables - the manner in which this picture
is modified away from the exactly solvable point is an important open question.

We may also consider perturbations that break the strong symmetries but conserve the
weak ones. This is accomplished by a generic choice of quantum jump operator, such as
F}’2’3’4. In this scenario, we expect our system to asymptote to a unique steady-state, p o< 1.
The weak symmetries cause the Lindbladian spectrum to decompose into an extensive number
of symmetry sectors, with the steady-state solution residing in a particular sector. This means
that one still retains the ability to discuss Liouvillian gaps with respect to the steady-state
sector versus gaps of different sectors, and a careful analysis of the sectors would allow one to
identify the operators that live in these sectors. In passing, we note that particular choices
of quantum jump operators such as F? Y with p,v € {1,2,3,4} will break the local strong
symmetries W; but preserve a global strong symmetry @ = Hj F;’ (this is not a “new”
symmetry, as it can be re-expressed as a product of W; operators). As such, in this case we
expect a pair of steady-state solutions p+ o< 1T £ Q.

Finally, a fully generic choice of perturbation that breaks all symmetries will give a single
steady-state solution. We again stress an important open question of to what extent quasipar-
ticle excitations of the Lindbladian are robust to these types of perturbations. With regards
to the extensive number of steady-state solutions in the exactly solvable limit, one will ex-
pect that a small generic perturbation away from this point will cause all but one of these
steady-states to persist for a long timescale given by the inverse strength of the perturbation.

Developing an analogous theory for the excitations is a promising research direction, as it
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emphasizes a physical interpretation of the Lindbladian spectrum that is already familiar in

the study of closed systems.
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Figure 5.7: We illustrate the classes of observables considered in our work, as well as their
corresponding Liouvillian gaps. a) flux operators W;, which are conserved under Lindbladian
time evolution. b) Non-local Wilson loop operators, which are also conserved - we emphasize
that quantum superpositions of states with different Wilson loop eigenvalues are not steady-
state solutions and eventually evolve into classical superpositions. ¢) A pair of d Majorana
fermion excitations, connected by the Wilson line of a Zs gauge field (not shown). These
have a Liouvillian gap of 4y and the arrows indicate that the eigenstates of <L are delocalized
Bloch-wave-like configurations. d) A d and d’ Majorana fermion, connected by the Wilson line
of a Zy gauge field. The Liouvillian gap is shown in Fig. 5.4, and we find that the wavefunction
of the d fermion is highly localized around the d’ site. The single-site operator Fg? corresponds
to the limit [ — 0. e) A pair of d Majorana fermion excitations, connected by the Wilson
line of a Zy gauge field. These have a Liouvillian gap of 4v. f) Generic single-site operators
I'234 as well as multi-site operators obtained by including d fermion excitations. Lower
bounds on this Liouvillian gap are given in Fig. 5.6. Part g) is a schematic of the resulting
decay of the different classes of operators under dissipative time evolution.

5.5 SUMMARY AND DISCUSSION

In this work, we analyze the Lindbladian dynamics of a quantum spin-3/2 system which
admits an exact solution in terms of Majorana fermions coupled to static Zy gauge fields.
This allows us to characterize the steady-state solutions as well as identify distinct classes
of Liouvillian gaps, with different gaps determining the equilibration timescale of different

classes of observables, as summarized in Fig. 5.7. Crucially, these timescales fall into different
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categories with distinct parametric dependencies on . While closed loops of Vj, in Eq. (5.8)—
i.e., the fluxes, Fig. 5.7(a), and on a torus also the non-local Wilson loops, see part (b)—do
not decay at all in the exactly solvable limit, pairs of emergent Majorana fermions, Fig. 5.7(c-
e), decay with rates that scale linearly with small v; depending on whether they exhibit a
quantum Zeno effect, these rates decay to zero in the large-y limit. Finally, operators of
the last category, like I''234 see Fig. 5.7(f), which are not conserved by the Hermitian
dynamics, exhibit a decay rate that is singular for small v in the thermodynamic limit;
naturally, the entire dynamics is unitary at v = 0, however, sending v — 07 after taking
the thermodynamic limit N — oo, the decay rates of these operators is of order of the
exchange couplings J of the Hamiltonian (5.5). This leads to particularly non-trivial three-
step fractionalized thermalization dynamics, see Fig. 5.7(g), in the thermodynamic limit: first,
at times of the order of the inverse exchange couplings 1/J, all operators of the third kind
decay, which is parametrically separated from the time-scale o< 1/v where (gauge invariant
pairs of) the Majorana fermions d and d’ decay. Then only closed loops of Vj, survive, which
cannot decay unless perturbations beyond our solvable limit (cf. Sec. 5.4) are included.

We emphasize that our model, while fine-tuned to ensure exact solvability, demonstrates
a novel and potentially generic feature - the presence of distinct quasiparticle excitations in
the Lindbladian spectrum, when regarded as a non-Hermitian operator in a doubled Hilbert
space, leads to a separation of timescales in the equilibration behavior of different classes
of observables. The exact solvability of our model allows us to demonstrate these features
explicitly, and can serve as a useful starting point for understanding the robustness of this
phenomena in the presence of interactions between quasiparticles. Alternative methods such
as the Keldysh formalism [452, 538] may prove to be useful in making perturbative treatments
of these interactions tractable.

One promising direction for future research is the construction of additional exactly solv-
able Lindbladians through this fermionization technique. For closed systems, there exists a
rich literature on generalizations of the Kitaev honeycomb model to other exactly solvable
models [90, 305, 451, 525, 545]; in these cases, the exact solvability is often geometric in
nature (i.e. arising from a particular choice of lattice connectivity and hopping structure) and

is unaffected if a subset of couplings become non-Hermitian. One interesting phenomenon
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that may arise in a certain parameter regime of these models is gapless fermionic excitations,
in contrast to our model where fermion excitations have a constant gap 4. This would im-
ply algebraic, rather than exponential, decay of the expectation values of certain classes of
operators [63]. Lindbladians with gapless excitations are not new [312, 334, 465, 577] - the
intriguing new feature of this would be the ability to cleanly separate this spectrum of gapless
excitations from gapped gauge excitations, implying distinct equilibration timescales of these
operators.

Generalized Lindbladian constructions may also prove useful at developing a general re-
lation between the exactly solvable open system and the underlying Hermitian dynamics.
In our model, the Hermitian dynamics was given by a QSL with two species of Majorana
fermions, with the dispersion of one of the fermions tuned to zero. In this limit, a particular
choice of quantum jump operators admit quasiparticle excitations of the Lindbladian which
display a close relation with the excitation spectrum of the closed system. It is intriguing
to ask whether, in a generic system that is rendered exactly solvable through this technique,
a similar relation exists between quasiparticle excitations in the doubled Hilbert space and
quasiparticle operators of the physical Hilbert space. A more robust understanding of this
relation, including potential violations in certain systems, is another promising direction for

future research.

Note added. Just before posting our work, a related paper appeared on arXiv [100], studying
exactly solvable BCS-Hubbard Lindbladians. Although the starting point of their analysis
involves a distinct microscopic model of complex fermions with pairing terms, a transformation
to Majorana fermions yields the same Lindbladian as ours within the 7w-flux sector. Due to the
different microscopic models, our theory also has a non-trivial gauge invariance requirement,
with non-trivial consequences. For instance, the Liouvillian gap in the m-flux sector in Fig. 5.4
is larger as an additional fermion has to be included. We also cite a related work [157] studying
a quantum spin Lindbladian very similar to our own, which appeared on arXiv shortly after

our posting. Our results are consistent with their analysis.
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The miracle of the appropriateness of the language
of mathematics for the formulation of the laws of
physics is a wonderful gift which we neither under-
stand nor deserve. We should be grateful for it and
hope that it will remain valid in future research and
that it will extend, for better or for worse, to our
pleasure, even though perhaps also to our bafflement,

to wide branches of learning.

Eugene Wigner

Deconfined quantum criticality of nodal d-wave superconductivity, Néel

order and charge order on the square lattice at half-filling

6.1 INTRODUCTION

The cuprate high temperature superconductors display a complex phase diagram involving
low temperature (7") phases with d-wave superconductivity, Néel antiferromagnetic order,
and charge order, and the higher T pseudogap and strange metals [242]. The remarkable
pseudogap metal phase is of central importance, and many of its properties can be described
by a model of hole pocket Fermi surfaces [43, 87, 134, 235, 236, 313, 362, 374, 396, 409,
422, 453, 467, 497, 512, 513, 544, 563]. Such Fermi surfaces enclose an area distinct from
the Luttinger volume, and this requires the presence of a background spin liquid, realizing
a state that has been called a ‘fractionalized Fermi liquid’ (FL*) [438, 440]. Recent works
[87, 88] have proposed that the low T cuprate phase diagram can be understood from a
theory of the confining instabilities of a FL* state with a ‘r-flux’ critical spin liquid on the
square lattice. The critical spin liquid emerges from a background into a central role in
such confining transitions, and a detailed understanding of its role then becomes a central

ingredient in unraveling the mysteries of the cuprate phase diagram.
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An important feature of the FL* theory is that its fractionalized excitations have the same
basic structure as that in a Mott insulator at half-filling, even though the pseudogap state
is at non-zero doping. The doping is accounted for by the hole pocket Fermi surfaces, which
are coupled to the spin liquid. Given this relatively innocuous influence of non-zero doping,
the present paper will investigate a simpler model which remains at half-filling, but has the
same set of conventional symmetry-breaking phases without fractionalization at low temper-
atures, as at non-zero doping: a d-wave superconductor with 4 nodal points for Bogoliubov
quasiparticles, and conventional states with Néel, valence-bond solid, charge, or staggered
current orders. There are quantum phase transitions between these states which are very
likely described by deconfined critical points, allowing a systematic study of associated crit-
ical spin liquids. Our simpler model should be amenable to numerical simulations by the
well-developed methods of lattice gauge theory of relativistic systems [399], and shed light on
the role of spin liquids in the phase diagram of the cuprates.

We begin by noting a few recent developments which relate to the FL*-confinement proposal

of Ref. [87]:

o Angle-dependent magnetoresistance measurements on the underdoped cuprates [136]
are consistent with hole pocket Fermi surfaces [43, 87, 134, 235, 236, 313, 362, 374, 396,
409, 422, 453, 467, 497, 512, 513, 544, 563].

o A long-standing issue with the hole pocket model of the pseudogap metal is that the
pairing of quasiparticles around the hole pocket leads to a d-wave superconductors with
eight nodal points [321]. This problem can be resolved by not viewing the onset of
superconductivity from the pseudogap normal state as a BCS-like pairing of electronic
quasiparticles on Fermi surface. Instead, the spin liquid of the pseudogap already fea-
tures a singlet pairing of electrons [350], and we should consider the onset of super-
conductivity as a confining transition of the w-flux spin liquid by the condensation of
a fundamental Higgs scalar. (In both viewpoints, the non-zero temperature transition
of the onset of superconductivity remains in the Kosterlitz-Thouless universality class.)
Then the fermionic spinon nodal points of the spin liquid annihilate four of the nodal

points descending from the hole pockets, and we obtain a d-wave superconductor with
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four nodal points [77, 88|, as is expected in a conventional BCS state. Moreover, the

large velocity anisotropy of the nodal quasiparticles is easily obtained in this approach.

o Photoemission observations in the electron-doped cuprates [533] show a gap maximum
at an intermediate wavevector away from the edge of the Brillouin zone, and not on the
Fermi surface. This feature is also obtained as a consequence of the background spin
liquid [88]. Indeed, even when the pseudogap metal has no Fermi surfaces intersecting
the zone diagonals, the resulting d-wave superconductor still has 4 nodal points along
the zone diagonals, and these are directly descended from the nodal spinons of the

underlying spin liquid [88].

e Numerical fuzzy sphere and other studies have found evidence for w-flux spin liquid
criticality, which ultimately gives way either to ‘pseudo-criticality’ [574] or nearby multi-
criticality [81, 475, 567]. In contrast, the commonly used ‘staggered flux’ spin liquid [270]

is expected to be strongly unstable to a trivial monopole [5, 460].

o Numerical studies [140, 292, 342, 376, 505] of S = 1/2 square lattice antiferromag-
nets with first- and second-neighbor exchange interactions (the J;-Jo antiferromagnet)
display a transition from the Néel state to valence bond solid order [389, 392], across
an intermediate spin-liquid regime which is likely described by the w-flux spin liquid
[501]. A gapless Zy spin liquid has also been proposed for this intermediate regime,
and this can be obtained naturally by condensing Higgs fields on the 7m-flux spin liquid
[381, 384, 441, 442] (the model studied in the present paper can be easily extended to
include these Higgs fields, but we will not present the extension here !). Doping this
square lattice spin liquid has recently been shown [221, 222] to lead to robust d-wave
superconductivity, and this establishes a close connection between the 7-flux phase and

d-wave superconductivity [213, 558].

» Nuclear magnetic resonance experiments on YBayCuzO, [571] show the appearance of

a secondary spin gap which is possibly connected to the appearance of charge order.

'The theory of Ref. [442] can exhibit a bicritical point where the Néel, VBS, and gapless Z2 spin liquids
meet. This bicritical point can realize SO(5)-symmetric bicritical point in the studies of Ref. [81, 475] if the
Yukawa couplings between the Higgs fields and spinons are irrelevant at the bicritical point.
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This can be associated with the gapping out of the spinon excitations upon a confining

transition to charge order, as we study in a simplified model in this paper.

o Magnetotransport studies in HgBagCagCusOgs [348] indicate a direct transitions be-
tween magnetic and charge ordered states. Such direct transitions are possible across

deconfined critical points considered here.

The ‘m-flux’ critical spin liquid is described by a theory of fermionic spinons with Ny = 2
massless Dirac points in their dispersion coupled to a SU(2) gauge field [4]. This state also
has a dual description [501] in terms of the critical CP! theory of the bosonic spinons [389)].

These dual descriptions are important in understanding the low temperature states of the

cuprate phase diagram as confinement/Higgs transitions of this spin liquid:

(7) The onset of Néel order is described by the Higgs condensate of the bosonic spinons in
the CP! theory [341], or equivalently, by the confinement of the SU(2) gauge field of the

fermionic spinon theory.

(it) The onset of d-wave superconductivity with nodal Bogoliubov quasiparticles [77], along
with the onset of charge order, is described by the Higgs condensation of a charge e,
SU(2) fundamental boson B (introduced in Refs. [270, 512]) of the fermionic spinon

theory.

As noted above, this paper will study a simpler limit of the theory of Ref. [87]. We will
move from the system at non-zero doping, and instead consider only the half-filled square
lattice with a particle-hole symmetric Hamiltonian. Rather than introducing superconduc-
tivity and charge-order by doping, we will explore the onset of such phases at half-filling as
may be induced by reducing the Hubbard U [377], or by introducing additional short-range
interactions including pair-hopping terms [24, 535].

At half-filling, there are no hole pocket Fermi surfaces, and this simplifies the treatment
of charge fluctuations. The particle-hole symmetry leads to a Lorentz-invariant form for the
dispersion of the excitations at low energies. We will study zero temperature quantum phase
transitions between (A) the insulating Néel state, (B) a d-wave superconductor with 4 gapless

nodal quasiparticles, and (C) a state with charge order; see Fig. 6.1 for the phase diagrams
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Figure 6.1: We are interested in a SU(2) gauge theory with Ny fundamental Dirac fermions,
and Ny = 2 fundamental complex scalars. We show phase diagrams of two distinct large Ny
and Ny limits, with Ny/N; fixed. First order phase transitions are denoted with a solid line
while second order phase transitions are denoted with a dashed line. (a) Phase diagram of the
theory Ly + Lp in (6.17) and (6.23). There is a USp(2Ny)xUSp(N,)xU(1) global symmetry
for v # 0. (b) Phase diagram in an alternative large N, limit discussed in [89] of the theory
Ly + Lp in [89], with a USp(2N;)xSU(N,)xU(1) global symmetry for v # 0. The theories
in (a) and (b) co-incide along the line v = 0, when they both have USp(2N)xUSp(2/Ny)
global symmetry. The two theories are also identical for the physically interesting case with
Nf :Nb:2 for all v.

of the continuum field theories to be introduced in Section 6.3. This field theory is a SU(2)
gauge theory N; = 2 relativistic scalars in addition to the Ny = 2 massless Dirac fermions of
the m-flux state.

We note an earlier work [383] which considered a continuous Néel/d-wave superconductor
quantum transition, but without gapless nodal quasiparticles in the d-wave superconductors,
and only easy-plane Néel order. Also, SU(2) gauge theories of the cuprates have been studied
extensively earlier, as reviewed in Ref. [270], but in reference to a staggered-flux spin liquid
which breaks the gauge symmetry to U(1)—we will not consider this spin liquid because it is
expected to be unstable to a trivial monopole [5, 460].

In Section 6.5, we will consider the consequences of adding charge fluctuations to the Néel-
VBS transition on the honeycomb lattice [146, 390] (VBS order is also known as ‘kekule’ order
on the honeycomb lattice). Following the same procedure as for the square lattice, we find only

a Dirac semi-metal phase with no broken symmetry, in contrast to the superconducting and
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Dirac
semi-metal

Figure 6.2: Schematic phase diagram for the SU(2) gauge theory of an extended Hubbard
model on the honeycomb lattice. The bicritical point B [256] is described by the Ny = 2,
Ny = 1 SU(2) gauge field theory. The thick line indicates a first-order transition. The thin
lines indicate second-order transitions out of the Dirac semi-metal phase which are presumed
to be described by Gross-Neveu-Yukawa field theories [52] without gauge fields.

charge-ordered phases on the square lattice. As shown in Fig. 6.2, the Néel, VBS, and Dirac
semi-metal phases of the honeycomb lattice are proposed to meet at a multicritical point, as
in the numerical study of the Hubbard model on the honeycomb lattice in Ref. [280]. In our
theory, the multicritical point is bicritical [256], and is described by the Ny =2, N} =1 case
of the SU(2) gauge field theory considered in the body of the paper. The same field theory
was considered earlier by Hermele [186] for a different proposed transition on the honeycomb
lattice.

Our main results here are obtained by two different large flavor expansions of our SU(2)
gauge theory. The resulting phase diagrams in Fig. 6.1 contains first-order boundaries, a
multi-critical point M where all three phases meet, and second-order transitions between
Néel/VBS order, charge order, and nodal d-wave superconductivity. The multi-critical point
M and the second-order transition are described by deconfined critical SU(2) gauge theories.

We will determine the scaling dimensions of gauge-invariant Néel, valence bond solid (VBS),
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d-wave superconductor, and charge order parameters in these critical theories.

Of particular interest is the scaling dimension of the gauge-invariant electron operator,
which we also determine. This controls the manner in which gapless nodal quasiparticles
emerge in the d-wave superconductor across the transition from an insulator with a non-zero
gap to charged excitations. We summarize the results on scaling dimensions in [89]. Ref. [8§]
considered a mean-field theory of the corresponding transition in the electron-doped cuprates:
in this case, the transition is to a pseudogap-metal, but the nodal region of the Brillouin zone
can be gapped in the electron-doped pseudogap metal. Thus our theory has a remarkable
feature not present in BCS theory: gapless nodal quasiparticles appear in a superconductor
at a momentum which is gapped in the normal state. As we noted above, Ref. [88] pointed
out connections of this feature to recent photoemission experiments in the electron-doped
cuprates [533].

Section 6.2 introduces the square lattice SU(2) gauge theory of interest in this paper.
This theory is defined in terms of fermionic spinons f;,, @ =71, and charge e bosons B;
on the sites ¢ of the square lattice. Both the fermionic and bosonic matter fields transform
as SU(2) gauge fundamentals, and there is also a dynamical SU(2) gauge field on the links
of the lattice. We then consider the most general lattice gauge theory for these matter and
gauge fields consistent with the projective symmetry transformations of the w-flux spin liquid,
and with gauge-invariant observables having the same symmetry signatures as the Hubbard
model with particle-hole symmetry. In the limit of strong gauge couplings, we can perform
a strong-coupling expansion of our lattice gauge theory by integrating out the lattice gauge
fields [399], and this will lead to the extended Hubbard model corresponding to our SU(2)
lattice gauge theory. See Chapter 14 of Ref. [413] for a simpler example of a conventional
theory of gauge-invariant degrees of freedom obtained from a lattice gauge theory of partons.

Note that our method is the converse of that usually followed in the condensed matter
literature. We do not start from a lattice model of correlated electrons, and then obtain a
gauge theory by fractionalizing the electrons. Instead, we start from a lattice gauge theory and
match it to the electronic problem of interest by general arguments based on gauge invariance
and global symmetry. This is a powerful method of incorporating non-perturbative knowledge

of a fractionalized state (in our case, the 7-flux spin liquid) in a very general setting.

167



Chapter 6. Deconfined quantum criticality of nodal d-wave superconductivity, Néel order
and charge order on the square lattice at half-filling

Section 6.3 describes the continuum limit of the square lattice gauge theory of Section 6.2
along the lines of Ref. [87]. This leads to a quantum field theory of Ny = 2 Dirac fermions and
Ny = 2 complex scalars, both transforming as SU(2) gauge fundamentals. We also discuss
the generalizations of this theory to general Ny, and the operators corresponding to the
gauge-invariant observables of the Hubbard model.

Section 6.4 examines the nature of fermion-boson couplings in the continuum field theory
without any spatial and temporal gradients. We find that there are no allowed terms which
are relevant in the large Ny, expansion of critical theories. However, we do need to consider
the higher-order formally irrelevant terms because they are important in determining the fate
of the spin gap in the Higgs phases where the bosons are condensed.

Section 6.5 describes the extension of our results to the honeycomb lattice.

Analysis of the resulting continuum theory, including the N, = oo saddle points and 1/Ny,,
corrections to scaling dimensions, is performed in a separate work [89]. In particular, anal-
ysis of the N, = oo saddle points leads to the phase diagrams in Fig. 6.1, where d-wave

superconductivity, charge order, and Néel/VBS order are all found.

6.2 SU(2) SQUARE LATTICE GAUGE THEORY

We begin by recalling the SU(2) square lattice gauge theory of Ref. [87] in the simpler setting
of a half-filled square lattice, with no Fermi surfaces in any of the states studied. We also
assume a particle-hole symmetry. This lattice gauge theory is likely free of a sign problem in
quantum Monte Carlo.
We write the electron spin operators as
a=|""1. (6.1)

|
Gy

on sites % of a square lattice. We fractionalize the electrons into fermionic spinons f;,, @ =T,
and charge e bosons B; via [512]

Cs = B, (6.2)
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] Symmetry ‘ Ca ‘ Ja ‘ B, ‘

T, Ca (=1)Yf, (—1)YB,
Ty Ca Ja B,

P, Ca (=1)*fu (-1)*B,
P, Ca (=1)Yfa (=1)YBa

P,y Co (=)™ f, (-1)*™B,
T €aBCB (=1)" Veusfs | (-1)*T¥B,
C (—1)™eqpc) Easf} (—=1)*tv B

Table 6.1: Projective transformations of the f;, spinons and B; chargons on lattice sites
t = (x,y) under the symmetries T, : (z,y) = (z + 1,9); T, : (z,y) = (zv,y+1); Py :
(z,y) = (—z,y); Py : (z,y) = (x,—y); Py : (x,y) — (y,z); time-reversal 7, and particle-
hole symmetry C. The indices a, 3 refer to global SU(2) spin, while the index a = 1, 2 refers
to gauge SU(2). Also shown are the (non-projective) transformations of the gauge-invariant
electron c,.

where
fir
,¢'L: n 9 (63)
Ji
and
Bi; By; —B3.
B; = ) . Bi= ’ . (6.4)
Bo; By B

This fractionalization introduces a SU(2) gauge symmetry, where

vy = Usyy . By — U By, (6.5)

under a SU(2) gauge transformation Uj.

Remarkably, essentially all of the physics of the 7w-flux spin liquid phase, and its descendants,
studied here are consequences of the SU(2) gauge symmetry, the spin rotation symmetry, and
the action of other symmetries on the spinons as summarized in Table. 6.1. The action of the
latter symmetries on the B chargons follows from the decomposition (6.2), and these are also

shown in Table 6.1. A key property of Table 6.1 is the relation

T,T, = —T,T (6.6)

which ensures 7w-flux on both spinons and chargons, and at least two degenerate minima in
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the dispersion the chargons.

The degrees of freedom of our square lattice gauge theory are one SU(2) fundamental
fermion 1; on each lattice site, one SU(2) fundamental boson B; on each lattice site, and a
SU(2) link field U;; on each nearest-neighbor link of the square lattice. We now describe the
various terms in the Hamiltonian coupling these degrees of freedom.

The simplest fermion spinon imaginary time (7) Lagrangian compatible with Table 6.1 is
LW) =Y iDp; —iT Y [zp}eijUijzz;j vio g, (6.7)
i (23)

where D, is a co-variant time derivative, 2,7 are nearest-neighbors, J is a real coupling constant

of order the antiferromagnetic exchange,
€j1; = —eij (6'8)

is a fixed element of the Zg center of the gauge SU(2) which ensures 7 flux per plaquette; we

choose

ei’i+§ =1 s ei’i+g = (_1):(: s (69)

where i = (z,y), € = (1,0), y = (0,1). The link field U;; = U]Ti is the fluctuating SU(2) lattice
gauge field, and the mean-field saddle point of the m-flux phase is obtained by setting U;; = 1.
The hopping term in £(1)) has been chosen pure imaginary as that ensures a simple coupling
to the SU(2) gauge field, along with SU(2) spin rotation invariance. The spin operator on
each site S; = (1/2) f,j wOaplfg (0 are the Pauli matrices) can be expressed in terms of the 1;

in the following SU(2) gauge-invariant combinations:

28 =i, —1 . Sui— 1Sy = —apPaitlhi » (6.10)

where a,b = 1,2 are SU(2) gauge indices, and &4 is unit antisymmetric tensor. The nearest-

neighbor bond energy operator can be identified with each individual term in £(v))

bond energy: <S7; : Sj> ~~ Qf,ij = Qf,ji =— wgeijUij?l)j +i¢ .7] : (6'11)
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In the cuprates, modulations of Q¢ ;; would show up as modulations in the charge density on
the sites (and similarly for modulations in @y ;; below).

Turning to the bosonic partons, and following Ref. [87], we can also write down the most
general effective Lagrangian for the B;, keeping only terms quadratic and quartic in the B;,

and with only on-site or nearest-neighbor couplings:

2 : . .
£B) =Y ID.Bi* ++ Y BB, —iw Y [BjeijUiij vie g +VB).  (6.12)
i i (ig)
A linear time derivative term is allowed only in the absence of particle hole symmetry, and
so has been omitted. The couplings r, w; are real Landau parameters, and the quartic terms
are in V(B). These quartic terms are more conveniently expressed in terms of quadratic
gauge invariant observables. By examining the transformations in Table 6.1, we can deduce
the following correspondences between bilinears of the B with those of the bilinears of the
gauge-neutral electrons:
site charge density: <cIacm> ~ pi = BIBi

(the correspondence between p; and site charge density holds
only in the absence of particle-hole symmetry; see Section 6.4),

bond density: <CT c. +eh e > ~ Qpij = Qpji =Im (BTe. .U.ij> ,

[T To' ja it 11j 1,

bond current: i<cT. c. —ch c. > ~ Jij = —Jj; = Re (BTe .U..B.) ,

(1o To' Ja it RS % |

pairing: <6a56m0j5> ~ Aij = Aji = EabBaieijUiijj . (6.13)

Note that the bond density observable () ;; of bosons above has the same symmetry signature
as the bond energy Q) ;; of fermions in (6.11), and both are identical to the hopping terms in
L(B) and L(1)) respectively. Now we can write an expression for V(B) by keeping all quartic

terms which involve nearest-neighbor sites:

v(B) = gngJerZPi (Piva + pivg) +9 ) 1Ay
i i (i3)

+IDY Qi+ KLY T (6.14)
(i) (id)
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We also have the usual flux energy term of lattice gauge theory for the gauge field U;;

1
LOU)=—= > Tr[Uy;UppUnlsul +cc., (6.15)
9 i jklen
along with a gauge field kinetic energy [255].
Finally, we can consider quartic terms which couple the spinons and chargons directly.
From the composite operators defined above we can write down the following terms involving

only nearest-neighbor sites

LBY) =Y [Al Chatio + A1 oo+ Ao Quij Qrij] - (6.16)
(23)

Our aim is to determine the phase diagram of the above square lattice gauge theory as

a function of the boson ‘mass’ tuning parameter r, and the various quartic boson couplings
in (6.14). The general physics is that of a transition between Higgs and confining phases
of the SU(2) gauge theory, with deconfined conformal gauge theories describing continuous
transitions between the phases. When r is large and positive, B excitations are gapped, and
we can work with the fermion-only theory in (6.7)—this theory is expected to confine into
an insulator with either Néel or VBS order [474, 501, 574]. On the other hand, when r is
negative, B condenses in Higgs phases, and fully quenches the SU(2) gauge field. The Higgs

phases break one or more of the global symmetries, based upon the correspondence in (6.13).

6.3 QUANTUM FIELD THEORY AND ORDER PARAMETERS

Now we take the continuum limit of the square lattice gauge theory action in Section 6.2, and
obtain the quantum field theory studied in the present paper. We will take the simplest case
in which the boson hopping terms are only nearest-neighbor, as in (6.12), so there are only two
valleys in the boson dispersion. This will lead to a SU(2) gauge theory with N; = 2 flavors
of SU(2) fundamental Dirac fermions ¢, and N, = 2 flavors of SU(2) fundamental bosons B.
As for the lattice gauge theory in Section 6.2, almost everything follows from the symmetry
transformations of the fields: the continuum limits of the transformations in Table 6.1 are

presented in Table 6.2.
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For the continuum limit action of the fermionic spinons, we follow the notation of Ref. [441],
which follows that of earlier related works [442, 481, 501], in obtaining from (6.7) the fermionic

Lagrangian

Ly = ipy* (9, — iAL0®) 1h, (6.17)

where 0® are the Pauli matrices, a = z,y, 2z, y* are 2 x 2 Dirac matrices which act on the
sublattice space, Aj is the SU(2) gauge field, and the 1 have an additional Ny = 2 valley
(‘flavor’) index which is not shown. From the v bilinears, we can make a gauge-invariant
5-component real vector, which represents the 3 + 2 components of the Néel and VBS order
parameters [381, 384, 501]; the Néel order is a staggered modulation of the spin in (6.10),
while the VBS order is a modulation of the bond energy in (6.11). The properties of Ly
are invariant under global SO(5) rotations of this vector, and all our analysis below will
preserve this SO(5); symmetry (the f subscript merely denotes that the symmetry acts on
the fermions).

It is a simple matter to generalize (6.17) to arbitrary integer Ny: we allow the valley index
to run over 1... Ny. After transforming to Majorana fermions, the free fermion Lagrangian
has a SO(4N¢) symmetry, and modding out the gauge symmetry as in Ref. [501], we conclude
that the Lagrangian £, has a USp(2Ny)/Z, global symmetry.

In the bosonic matter sector, we express the lattice B; bosons in terms of complex bosons

Bys, with a = 1,2 the SU(2) gauge index, and s = 1... N, = 2 the valley (‘flavor’) index [87]:

_Baleiﬂ’(ery)/Q 4 Ba2(\/§ + 1>€i7r(:):fy)/27

Bo(r) T even (6.18)
alT) = )
Ba1 (V2 + 1)eim@H0)/2 — Byeime)/2,

x odd

Under particle-hole symmetry C, the transformations in Table 6.1 now imply that B,s — B..

Then (6.13) leads to the following gauge-invariant order parameters in the continuum limit
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[87]

d-wave superconductor : £, B41 B2
-CDW : B}B,, — BB, = B'y/*B
y-CDW : B! B, + Bi»B,, = B'i*B

d-density wave : i (B;;lBa2 ~ B;QBal) - _B'wB (6.19)

where g acts on valley indices. In terms of the lattice order parameters in (6.13), the d-
wave superconductor has A; ;15 = —A;; 5, but is independent of 4. The charge density
waves (CDWs) have period 2 modulations of @y ;; and p; (the modulations of p; are absent
when there is particle-hole symmetry, see Section 6.4), and are site-centered unlike the bond-
centered modulations of Q;; in the VBS state. The d-density wave order is odd under
time-reversal, and has a staggered pattern of electrical currents .J;;. Note that the CDW and
d-density wave orders can be written as a SO(3) vector B y’B , i = 2,7, 2. In combination
with the complex superconducting order, the order parameters in (6.19) form a SO(5); vector,
for reasons very similar to the fermions (again the b subscript denotes that this SO(5) acts
on the bosons). Computing the magnitude of this SO(5); vector, we obtain an important

identity which is easily verified by explicit evaluation
2 i) 2
(B1B)? = (BWB) + 4|eapBar Boal? - (6.20)
The continuum limit of the Lagrangian (6.12) for the bosonic sector is

Ly = (9, —iA%0®) B +r|B* +u/B[!
2 2
+ o (BT ;ﬁB) toup (BWB)

2
+ v (BTuyB> + 03 |easBa1 Bio|* - (6.21)

The first three terms in £p have the SO(5); global symmetry, for reasons essentially identical
to those for L;. All the order parameters in (6.19) are degenerate in this limit. This degen-

eracy and the SO(5), symmetry are broken by the v; 23 terms in (6.21), which are simply
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squares of the order parameters in (6.19). The identity in (6.19) was overlooked in Ref. [87],
and has the consequence that the 5 quartic terms in (6.21) are not all independent—this has
no material consequence to the mean-field results of Ref. [87], apart from a redundant labeling
of couplings. In the Higgs phase where B is condensed, one of the order parameters in (6.19)
must be non-zero, and, in mean-field theory, the choice is determined by the relative values
of v123 [87].

The generalization of the first three terms in (6.21) to arbitrary integer N, > 2, N, even
is straightforward, but the v; 23 terms in require further consideration. We limit ourselves to
the case v; = vg, so that the CDW orders and the d-density wave orders become degenerate.

Then we can write (6.21) as

Lp = (9, —iAS0®) B +r|B? +uB[*

. 2
+ v (BTMZB) + v3 |5abBale2|2 . (6.22)

Next, we use the redundancy implied by (6.20) to set v1 = 0 in (6.22). Then one extension of
(6.22) to general N, for the bosonic flavor indices is obtained by replacing 4 in the v term
by Jst the USp(1Vp) invariant tensor, consisting of N,/2 copies of £4 along the diagonal. In

this manner we obtain a Lagrangian valid for any N, (following conventions in Ref. [366])
L5 = (0 —i4%0%) B]® + S5 (|Basl? = No/9)? — - |BTT<B|" . (6.23)
e 2N, N,

Recall that the indices a, b act on the SU(2) gauge indices, and not the flavor indices, and so
do not need a large N, generalization. For N, = 2, the correspondence to the couplings in
(6.21) is w = 2Nyu, g = —u/r, v = —Nyvs/4. For general Ny, the order parameters in (6.19)

are replaced by the SU(2) gauge-invariant operators

d-wave superconductor :  Jst€qpBas Bt

charge order : B*.T.B (6.24)

as* st~ at
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where T are generators of USp(N,) obeying

=1 | TTT4+JT =0. (6.25)

We refer to the combined and degenerate CDW and d-density orders simply as ‘charge order’.

We can now use standard methods to generate a large NV}, expansion of (6.23) at fixed u, g,
and v. The coupling g will be used to tune across the transition, while v will determine the
fate of Higgs phase where B is condensed. The theory in (6.23) has a global USp(N)xU(1)
symmetry, and the Higgs phase with B condensed either breaks the U(1) symmetry leading to
d-wave superconductivity, or breaks the USp(/N) symmetry leading to degenerate CDW /d-
density wave orders.

At v = 0, the global symmetry of (6.23) is enhanced to USp(2Ny)/Zsy (as for the fermionic
spinons [501]), and the superconducting and charge orders all become degenerate. The en-
hanced symmetry is evident in the matrix form of the bosonic fields in (6.4), which generalizes

in the continuum to

By —Bj
B, = R (6.26)
BQS st
obeying the reality condition
Bs =0YB;0" . (6.27)

The USp(2Ny) global symmetry U, then acts as right multiplication B — BU,, where Uy is
a 2Ny x 2N, matrix acting on both the s flavor index, and the right matrix index of (6.26).
The condition (6.27) leads to the defining conditions for USp(2/Ny):

Uluy=1, Ule¥Uy=0". (6.28)

Note, also, that the SU(2) gauge symmetry in (6.5) acts a left multiplication Bs — UBs. As

in the fermion case, the USp(2NN,) and gauge SU(2) share a common Zsy center, and hence

176



Chapter 6. Deconfined quantum criticality of nodal d-wave superconductivity, Néel order
and charge order on the square lattice at half-filling

Symmetry B, Xap
T —iu* By X
T, —iu* B, W X
P, B, _,L',yac'uz ab
R7r/2 o MI\—/EMZ B, eiﬂ-’yo /46_7;7my /4Xab
T B YOy X*
C B* XoY
U(1), e B, Xap
SU(2), U,B XU}
SU(2), B Us X

Table 6.2: We tabulate the action of the microscopic symmetries, along with the SU(2)
gauge transformations, on the continuum fields. To concisely express the action of SU(2)
spin rotation symmetry, we represent the spinon degrees of freedom in terms of a matrix of
Majorana fermions X. The + matrix 7° is the labels the temporal component.

the global symmetry is USp(2Ny)/Zs.

The full action of the microscopic symmetries on the continuum fields is listed in Table 6.2.
To retain a concise representation of the SU(2) spin rotation symmetry, we re-express our
spinon degrees of freedom in terms of Majorana fermions. Following Ref [501], we introduce
the 4 x 2 matrix of Majorana fermions X, ;. Here a, s, b are the spin, valley and gauge indices,
respectively. The relation between X and the Dirac fermions is given by v, s = iUg,le,s,b-
The SU(2) gauge symmetry acts as X, .5 — Xa’s;chb and SU(2) spin rotation symmetry acts
as Xg 50 — UseXe s The action of all the symmetries apart from spin rotation symmetry lifts
directly to the complex fermions, although a U(1) subgroup corresponds to a uniform phase
rotation ¢ — €4y Both representations will be utilized here - the Majorana representation for
when a complete symmetry analysis is required, and the Dirac representation for perturbative
computations.

Along with the gauge-invariant fermion and boson bilinears noted above, we will also con-
sider mixed gauge-invariant bilinears which lead to the electron operator measured in photoe-
mission experiments. The quantum field theory yields the electron operator near the 4 nodal
points k = (+m/2,7/2). The particular combination of low-energy spinons and chargons that
correspond to these nodal excitations is rather complicated, as the spinor structure of the
Dirac spinons must be unpacked, i.e we consider the fields 9,5, With gauge index a, valley

index s, and spinor index « (which microscopically corresponds to a sublattice index). Sup-
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pressing the valley index and taking the Pauli matrices u’ to act on both chargon and spinon

valley indices, B} t'tq0 = B plbata, we have

Brip¥ (Va1 + (V24 1) 1ba2)

Cr=(r/2,7/2) X
€abBa ((\/§ + 1) ¢a1 - ¢a2)

—B;ipjz ((ﬁ + 1) ¢a1 + ¢a2) (629)

Crk=(—n/2,m/2) X
EabBaﬂx (—%1 + (\/§+ 1) 7/’(12) .

As we will show, generic operators of the form B} 9,50 and €,5Bastps’o are all renormalized
in the same way at criticality, so the details of Eq. 6.29 will not be relevant for computing the
scaling dimension of the electron operator.

We will analyze the theory Ly + Lp in the limit of large Ny and N, with a fixed ratio
N¢/Ny. We obtain the leading 1/Ny; corrections to the scaling dimensions of the gauge-
invariant fermion and boson bilinear order parameters, and also the electron operators in
(6.29). We will also obtain the corresponding properties in an alternative large N; limit.

Both of these calculations are contained in [89)].

6.4 FERMION-BOSON INTERACTIONS AND SPIN GAPS

In Section 6.3, we constructed a Lagrangian describing spinon and chargon fluctuations and
their coupling to a shared SU(2) gauge field. Importantly, there exist three independent
quartic chargon interactions which are relevant at tree-level and must be tuned in order to
reach a continuous transition. In this section, we consider symmetry-allowed interactions
between the spinons and chargons. The reason for this is twofold. First, quartic interactions
involving two spinons and two chargons are marginal at tree-level, and corrections to their
scaling dimension are important for the behavior of the critical theory. Second, condensation
of the chargons can qualitatively modify the dispersion of the spinons in the charge-ordered
phase, either by producing a gap or generating a Fermi surface. Note that upon condensation
of the chargons, the spinon becomes associated with the electron, and these dispersion mod-

ifications are reflected in the electronic spectral function. We show that in fact no quartic
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chargon-spinon interactions are allowed by the microscopic symmetries in the critical theory,
provided we enforce particle-hole symmetry. Relaxing particle-hole symmetry admits two
quartic interactions. In the charge ordered phase, these terms shift the Fermi energy of the
Dirac spinons, thereby inducing a spinon Fermi surface.

In this section, we will use the Majorana representation of the fermionic spinons; the explicit
action of spin rotation symmetry is essential in our symmetry analysis. In this language, a
generic quartic interaction that respects both charge conservation and spin rotation invariance

can be expressed in the form

D Aapjtr [BMQBTYW T X} , (6.30)
o,B.,j
where X = XT~0 and A is a coefficient tensor, not to be confused with the gauge field. The
indices a, 8, j run over four variables, the three Pauli and v matrices as well as an additional
identity element. We perform a systematic search for symmetry-allowed quartic couplings by
deducing the action of the microscopic symmetries on A, g j, which we regard as a 43 = 64-
dimensional vector. Symmetry-allowed quartic terms are given by choices of A which have
eigenvalue 1 under all the symmetries, the existence of which can be checked numerically.
With this approach, we deduce two terms that are allowed by all the microscopic sym-
metries, but are odd under particle-hole symmetry which we assume to be emergent in the

critical theory:

tr [BBT nyoX] ,

(6.31)
tr {BMZBTY,MW:”X} + tr [BM”BTYMWZIX} .
One can also consider analogous quartic couplings of the form
Z Cap,j tr [B,LLO‘BT] tr {Y’yj,uﬁX} . (6.32)

a,B,]

The tensor C transforms identically to A; however, the two quartic couplings in this case vanish
identically due to the anticommutation relations of the Majorana fermions. These results are
consistent with taking the continuum limit of the quartic spinon-chargon interactions on

the lattice given by (6.16), where we find that the leading order terms with no derivatives
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vanish. Allowing for quartic interactions that break particle-hole symmetry, such as an on-site
chemical potential or a second-neighbor electron hopping, generate the continuum interactions
in (6.31). The first term acts as a chemical potential and, at each of the two gapless points in
momentum space, induces an equal and opposite shift in the Fermi energy on the two species
of spinons.

Quartic interactions do not generate a spin gap in the ordered phases. To find six-term
interactions that can open up a spin gap in the CDW phase, we take the approach of consider-
ing the CDW order parameter, Bfu?B and Btu*B for 2-CDW and y-CDW respectively, and
coupling them to a quartic chargon-spinon interaction that has the same symmetry transfor-
mations. Multiple six-term interactions can be obtained in this manner; however, only two
are capable of producing a spin gap, which are

Bl #Bitr {B;ﬁBT Yuyx} :
(6.33)

Bty Btr [BMZBT Yuyx} :
Note that these terms vanish unless both the x-CDW and y-CDW terms are non-zero. This is
consistent with the fact that, once we are in the CDW phase, one is allowed to add non-gauge-
invariant terms to the spinon dispersion which break translational symmetry. The symmetry
transformations of gauge singlet and triplet spinon bilinears were tabulated in Ref. [481];
from this analysis, one can conclude that the only possible mass term in the CDW phase,
tr [aaYqu ], must be odd under translations in both the x and y directions. This term also
breaks particle-hole symmetry; however, as it is proportional to four powers of the chargon
condensate, it will generically be smaller than the previously-discussed perturbations which

generate a spinon Fermi surface.

6.5 HONEYCOMB LATTICE

The ground state of the large-U Hubbard model on the honeycomb lattice at half-filling
has long-range Néel order, as for the square lattice. Also as for the square lattice, adding
frustrating interactions leads to a phase with VBS (i.e. kekule) order [146, 280, 390]. But in

contrast to the square lattice, at smaller U the honeycomb lattice features a semi-metal phase
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with no broken symmetry, and an electronic dispersion with 2 massless Dirac fermion points
in the Brillouin zone.

In this section we extend the SU(2) gauge theory analysis to the honeycomb lattice. We
find just the three phases noted above, with no additional superconducting or charge-ordered
phases. This difference from the square lattice case can be traced to the fact that the bosonic
chargons, B, move in a background zero flux on the honeycomb lattice [186]. Consequently,
the B dispersion has only a single minimum in the Brillouin zone, and the Higgs phase where
B is condensed breaks no symmetries and realizes the Dirac semi-metal. We sketched a phase
diagram for the honeycomb lattice SU(2) gauge theory in Fig. 6.2.

The details of such a theory have previously been worked out in Ref. [186], but with the
interpretation of the deconfined phase as being stable - our interpretation is that this phase
is ultimately unstable to either Néel or VBS order. The low energy theory consists of Ny = 2
Dirac fermions with an emergent SO(5) symmetry rotating between Néel and kekule VBS
order. As there is only a single minima of the chargon disperion at k = (0,0), the spinons
are coupled to Ny = 1 bosonic chargons, with the full symmetry of the low-energy action
being SO(5) x SU(2), with the SU(2) chargon symmetry corresponding to the pseudospin. An
important point which is not explicitly discussed in Ref. [186] is the possibility of symmetry-
allowed quartic interactions between the chargons and spinons, which would be marginal at
tree level. However, this is rather simple to rule out due to the fact that the chargon minima
is at k = (0,0), and hence transforms trivially under all the lattice symmetries (an exception
are transformations which exchange the A and B sublattice, where the sublattice structure
of the chargon eigenvalue causes the chargon to acquire a minus sign - this has no effect
on chargon bilinears). As a result, symmetry-allowed chargon/spinon quartic interactions
demand that the spinon bilinear component is independently allowed by symmetry, and one
can easily verify that no such term exists.

The large-Ny, N, expansion proceeds identically to the one discussed previously in the
paper, with the exception that the chargon sector does not contain any quartic interactions
aside from a B* term (in other words, we take v = 0). The results for the various scaling
dimensions in [89] carry over to this scenario, although some of the chargon bilinears studied

can only be defined for even Ny.
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We note an interesting relation between the model of Ref. [425] and the SU(2) gauge field
theory with Ny = 2 and N, = 1. The global symmetry of the quantum field theory of
Section 6.3 is SO(5) s in the fermionic sector for Ny = 2, and USp(2)/Zs in the bosonic sector
for N, = 1. Ref. [425] considered a honeycomb lattice model in which quantum spin Hall,
superconducting, and Dirac semi-metal phases meet at a multicritical point, and proposed a
SO(5) Gross-Neveu-Yukawa field theory for the multicriticality. The GNY field theory has no
gauge fields, and hence there is an additional SO(3)=USp(2)/Zs global symmetry which acts
on the Dirac fermions. So the global symmetries of our SU(2) gauge field theory at Ny = 2
and N, = 1 are identical to those of the SO(5) GNY theory. It remains an interesting open

question whether these two theories are the same conformal field theory.

6.6 DISCUSSION

The discovery of high temperature superconductivity in the cuprates sparked decades of the-
oretical work on quantum phases proximate to the familiar Néel ordered state of the S = 1/2
square lattice antiferromagnet. Early work [389] argued that the proximate insulator has va-
lence bond solid (VBS) order. The nature of the Néel-VBS quantum transition has also been
extensively studied [434, 439, 501], and recent fuzzy sphere investigations [574] have concluded
that it is described by a ‘pseudo-critical’ theory with an approximate conformal symmetry,
and a nearly exact global SO(5) symmetry which rotates between the 3 + 2 components of
the Néel and VBS orders. One formulation of the pseudo-critical theory has a SU(2) gauge
field coupled to N; = 2 fundamental massless Dirac fermions: we have used the fuzzy sphere
results to conclude that this gauge theory confines in the infrared with either Néel or VBS
order, and the Néel-VBS transition is weakly first order. The ordering is selected by terms
which are formally irrelevant in the continuum theory, and we assume here that Néel order
is selected.

The present paper extends these investigations by allowing for charge fluctuations, while
remaining at half-filling and preserving particle-hole symmetry. Following earlier work [87], we
have shown that adding charge fluctuations to the SU(2) gauge theory leads naturally to a d-

wave superconductor with nodal quasiparticles, and states with period-2 charge order. We can

182



Chapter 6. Deconfined quantum criticality of nodal d-wave superconductivity, Néel order
and charge order on the square lattice at half-filling

then consider quantum transitions between the Néel state and the d-wave superconductor, or
between the Néel state and charge order. Such transitions are described by a direct extension
of the SU(2) gauge theory with Ny = 2 fundamental massless Dirac fermions—there are
additional fundamental N, = 2 massless complex scalars. Given the weakly broken conformal
symmetry for Ny = 2, N, = 0 [474, 567, 574], and the stability of conformal gauge theories at
large Ny, it is very plausible that the Ny = 2, IV, = 2 case exhibits true deconfined criticality
with an exact emergent conformal symmetry.

The Ny = 2, N = 2 quantum field theory studied in this paper is defined by the Lagrangian
Ly+Lpin (6.17) and (6.21). Here 7 is the tuning parameter which takes the system from the
Néel state (present when r is large and positive and B is not condensed) to the states allowed
by charge fluctuations (with d-wave superconductivity or charge order). The coefficients of
the quartic couplings vq 2,3 in (6.21) select among the latter states.

We studied two different large Ny generalizations of this theory, defined by the extensions
in the bosonic sector, discussed further in [89]. The phase diagrams of these theories at
Ny = oo appear in Fig. 6.1. The 1/Ny; expansions of the second-order quantum phase
transitions are described in [89]. We computed the scaling dimensions of the gauge-invariant
order parameters, which are composites of two fermions or two bosons, and the electron
operators at momenta (4 /2, 47 /2), which are the composites of one fermion and one boson
in (6.29). Our results are summarized in [89]. The results are not expected to be accurate at
Ny = Ny = 2, when the 1/Ny corrections are quite large.

The scaling dimension of the electron operator determines a novel feature of the quantum
transition out of the d-wave superconductor. The d-wave superconductor itself is conventional,
and has 4 nodal points with gapless Bogoliubov quasiparticles. In BCS theory, such gapless
quasiparticles are remnants of the Fermi surface of the parent metal, and so the electronic
quasiparticle residue remains non-zero across the metal-superconducting transition. However,
for the transition from the d-wave superconductor to the Néel state, there is no longer a
simple relationship between the Bogoliubov quasiparticles and the Fermi surface excitations
of a parent metal. Instead, the Bogliubov quasiparticles of the superconductor are connected
to the spinons of the deconfined quantum critical point. As there are no gapless electronic

excitations in the Néel state, and the electronic quasiparticle residue vanishes at the transition
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out of the d-waves superconductor with an exponent determined by the scaling dimension of
the electron operator at the deconfined quantum critical point.

A recent paper [88] has shown that a similar phenomenon can also happen in the elec-
tron doped case in a situation where the normal state has no Fermi surface crossing the
zone diagonals: nevertheless, gapless nodal quasiparticles do appear in the proximate d-wave
superconductor, in a region of the Brillouin zone which is gapped in the normal state. Fur-
thermore, there are connections of this remarkable phenomenon to the recent photoemission
observations of Ref. [533] on the electron doped cuprates.

Along the same lines, we believe the d-wave superconductor found in the quasi-one-dimensional
numerical study of Ref. [222], by doping the spin liquid of the J;-J; antiferromagnet, will have
4 nodal points in the two-dimensional limit.

Finally, we note the analysis of Section 6.5, where we applied the same line of thought
to the Néel-VBS transition on the honeycomb lattice [146, 390]. We found only a single
additional phase upon including charge fluctuations: a Dirac semi-metal with no broken
symmetries. All these phases (Néel, VBS (kekule), Dirac semi-metal) have been observed in
experiments on monolayer graphene [91, 552]. It is interesting to speculate that the absence
of a superconducting phase on the honeycomb lattice in our theory, in contrast to the square
lattice, is the underlying reason for the low superconducting 7.’s observed in the graphene

family of compounds.
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Mehran Kardar

Quantum phase transition at non-zero doping in a random t-J model

Two recent experiments [135, 142] have shed new light on the transformation in the metal-
lic parent state of the cuprate superconductors near optimal doping, while also highlight-
ing the central theoretical puzzles. Angle-dependent magnetoresistance measurements in
Laj —»Ndg 4Sr;CuOy [135] are compatible with a Luttinger volume ‘large’ Fermi surface only
at a hole doping p > p. = 0.23. Nuclear magnetic resonance and sound velocity measurements
in Lag_,Sr, CuOy [142] in high magnetic fields have uncovered glassy antiferromagnetic order
for p < p. &~ 0.19. These, and other, observations show that the parent metallic state of the
cuprates exhibits Fermi liquid behavior for p > p., and transforms to an enigmatic pseudogap
metal with glassy magnetic order for p < p.. Observations also indicate that the reshaping
of the Fermi surface, and the onset of the pseudogap, for p < p. cannot be explained by
long-range antiferromagnetic order, which sets in at a doping smaller than p,.

Here, we present exact diagonalization results on clusters of NV sites of a ¢-J model with
random and all-to-all hopping and exchange interactions (see (7.1)). In the thermodynamic
limit N — oo, the replica-diagonal saddle point of this model, and a related Hubbard model
[73], are described by (extended) dynamic mean-field equations in which the disorder self-

averages E. Moreover, closely related mean-field equations also appear in non-random models
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in high spatial dimensions [181, 456], indicating that the self-averaging features of the random
models properly capture generic aspects of strong correlation physics. A direct solution of the
N = oo replica-diagonal saddle point of the Hubbard model is presented in a separate paper
[118], with complementary results which are consistent with our conclusions below.

The insulating model at p = 0 has been studied previously by exact diagonalization [21],
and a non-self-averaging spin glass ground state was found. We find similar results at p = 0,
but with a reduced estimate for the magnitude of the spin glass Edwards-Anderson order
parameter, q. At non-zero p, we find that ¢ decreases monotonically, vanishing at a quantum
phase transition p. &~ 1/3. We present several results for thermodynamic, entanglement, and
spectral properties across this transition. All our results are consistent with the presence
of a self-averaging Fermi liquid state for p > p.; in particular, we find that the one-particle
energy distribution function is consistent with a disordered analog of the Luttinger theorem E.
The entropy, entanglement entropy and compressibility all have maxima near p.. We find
that the low frequency dynamic spin susceptibility matches that of the Sachdev-Ye-Kitaev
(SYK) class of models [250, 420] over a significant range of frequencies near p.; this includes
a subleading contribution which arises from a boundary graviton in dual models of two-
dimensional quantum gravity [247, 304, 410, 482, 483]. Such spectral features are not present
in theories that treat the transition at p = p. in a Landau-Ginzburg-Hertz framework for the

onset of spin glass order in a Fermi liquid [417, 433].

7.1 RANDOM ¢-J MODEL

We consider the Hamiltonian

N N
1 1
H=— Z tijPCIaCjaP—i- py— Z JijSi . Sj (7.1)
\/Nz‘;éjzl \/Ni<j:1
where P is the projection on non-doubly occupied sites, S; = (1/2)cgaaaﬂci5 is the spin

operator on site . The hoppings t;; = t;k»i and real exchange interactions .J;; are independent
random numbers with zero mean and variance 2, J2. Henceforth, we set t = J = 1. We work
in the canonical ensemble, where our system has a fixed particle (hole) density, n (p =1 —n).

At p = 0, hopping is prevented due to the double occupancy constraint, and the model
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reduces to an infinite-range Heisenberg model with random couplings. The p = 0 model
has been studied analytically by generalizing the SU(2) symmetry to SU(M) and taking a
large-M limit [155, 156, 420], and numerically for the case of M =2 [21, 66]. For SU(2), a
spin glass phase is found below a critical temperature 7, =~ 0.10J. When doping is present,
Ref. [352] predicts a disordered Fermi liquid phase for all non-zero values of p in the large-M
limit. However, it was recently argued [228, 478] that for the case of SU(2), the spin glass
phase should persist up to a critical finite value of doping, p., corresponding to a quantum
critical point separating the spin glass phase from a disordered Fermi liquid. Near criticality,
the model is predicted to exhibit SYK-like criticality with a non-zero extensive entropy and a
linear-in-temperature resistivity [172]. In a weak-coupling renormalization group, this critical
point emerges when the three fractionalized excitations in the ¢-J model become degenerate

in energy, leading to a zeroth order prediction of p. = 1/3.

7.2 DYNAMICAL SPIN RESPONSE AT T'= 0

We first present results on the nature of the spin correlations at T' = 0, providing evidence
that the spin glass phase shown to exist at p = 0 is stable for small values of doping, up to a
critical value of doping near p = 1/3. Using the Lanczos algorithm, we calculate the spectral

function at T' = 0,

@) =330 3 0 Il 52 o)l

X [6(w — (En — Eo)) — 6(w + (En — Eo))] ,

(7.2)

where numerically the delta functions are replaced by Gaussians with a small variance. The
signature of spin glass order, lim; o % >;(Si(0)Si(t)) = ¢ # 0, is reflected by a gd(w)
contribution to the dynamical structure factor S(w), which is related to the spectral function
at T =0 by x"(w) = S(w) — S(—w). For a finite system size, the exact delta function in S(w)
is replaced by a peak at low frequency, whose width approaches 0 in the thermodynamic limit
and whose total spectral weight gives q. Therefore, the spin glass contribution to x”(w) for
finite systems is given by a low frequency peak, and was analyzed for this model at p = 0

n [21]. Above p., a disordered Fermi liquid is expected to have a low-frequency behavior of
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Figure 7.1: The spectral function x”(w) of the random ¢t — J model, averaged over 100 disorder
realizations on an 18-site cluster. At low dopings, a sharp peak at low-frequency at low doping
is indicative of spin glass order. With increasing doping, the magnitude of this peak is reduced,
and the low-frequency behavior closely resembles the rescaled spectral function of the large
M SYK theory [420, 482, 483]. (Inset) After an extrapolation to the thermodynamic limit,
the integrated weight of the low-frequency peak is non-zero, indicating spin glass order. This
weight vanishes near p &~ 0.4. Plotted is the integrated weight for 8 < N < 18 (as a gradient
from red to blue), and the large-N extrapolation with error bars.

X' (w) ~ w.

The spectral function for the random ¢-J model, calculated using the Lanczos algorithm on
an 18-site cluster, is shown for several values of doping in Fig. 7.1. A prominent hump at low-
frequency for dopings p < 0.4 suggests the presence of spin glass order in this range of doping.
However, a large-N analysis of this hump must be performed in order to verify that the hump
asymptotes to a delta function in the thermodynamic limit. To do this, we first subtract off
a background contribution to account for the rest of the spectral weight. Anticipating SYK
behavior near the critical point at low frequencies, we subtract a spectral weight obtained
by rescaling the solution of the Schwinger-Dyson equations of the p = 0 model in the large-
M limit [420, 482, 483] (we rescale J, while preserving total spectral weight). This SYK
spectral weight has a leading term x”(w) ~ sgn(w) as |w| — 0 at ' = 0 (which generalizes
to tanh (w/2T) at low T'). The next-to-leading SYK term depends linearly in w, and arises
from the boundary graviton in the holographic dual [482, 483]. It is important to note that

the exponents of these two leading SYK contributions are universal and independent of M.
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Figure 7.2: Thermodynamics of the random ¢-J model for system sizes N = 12,16, 18, indi-
cated by increasing opacity. (a) The specific heat C' as a function of temperature for various
values of doping. (b) The linear-in-T coefficient of specific heat, v = C/T, for various dopings
as a function of temperature, and (c) for T'= 0.05 as a function of doping. (d) The thermal
entropy S as a function of doping for various temperatures.

Away from the critical point and in the spin glass phase, we find that the spectral function
is described well by a combination of the SYK result and a low-frequency hump. A large-N
analysis of this low-frequency hump, described in more detail in the supplementary material,
confirms that the variance of the hump vanishes in the thermodynamic limit, whereas the
spectral weight, shown in Fig. 7.1, remains non-zero. Our analysis gives a large-N estimate of
q ~ 0.02 at p = 0. For larger values of doping, ¢ decreases from its value at p = 0, eventually
vanishing at some critical value of doping p.. By linearly extrapolating the large-N prediction
for ¢ to higher dopings, we obtain an estimate of p. = 0.420 £ 0.007. Around this range of
dopings, the spectral function shows good agreement with the large-M critical prediction
given in Fig. 7.1. At dopings well above p = 0.4, we find the spectral function to be largely
independent of system size. No gap at low frequency is visible, and x”(w) ~ w behavior
consistent with Fermi liquid predictions is clear. We will provide a more rigorous verification

of the Fermi liquid phase at higher dopings via Luttinger’s theorem later in the paper.

7.3 THERMODYNAMICS AND ENTANGLEMENT

We investigate the specific heat and thermal entropy given by,

oF E
C= T and S =log(Z) + T (7.3)
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where Z denotes the canonical partition function, and E = (H) the internal energy. Results
for system sizes N = 12,16, 18 are shown in Fig. 7.2. To obtain the results on system sizes
N = 16,18 we employed thermal pure quantum (TPQ) states [469, 470] as described in
Refs. [192, 518, 519] similar to the finite-temperature Lanczos method [215, 367] (see E for
details). For each set of random couplings we sampled R = 5 TPQ states, cf. [518]. Error
estimates have been obtained from 1000, (400, 100) random couplings for N = 12, (16, 18).

The specific heat for p = 0 exhibits in Fig. 7.2(a) exhibits a broad maximum at 7" = 0.25,
in agreement with previous results [21]. At small values of doping p < 1/6 this maximum
remains at T = 0.25 while we observe an increase of the specific heat at higher temperatures.
The maximum is gradually shifted towards a higher value T' =~ 0.50 for dopings from p = 1/4
to p = 1/2. At low temperatures we observe that the specific heat is approximately linear
in temperature, with a maximal slope attained between dopings p = 0.20 and p = 0.40. The
linear-in-T" coefficient of the specific heat, v = C/T, is shown in Fig. 7.2(b). We observe an
increase of v when lowering the temperature for all values of doping. We show  at temperature
T = 0.05 as a function of doping in Fig. 7.2(c) for N = 12,16, 18. At this temperature, the
maximum is attained at p ~ 0.25. However, we find that this maximum is dependent on the
temperature. At temperatures below 7" = 0.05 sample fluctuations become too large for a
reliable estimate of the maximum. We note that a divergence of the v coefficient has been
reported at the pseudogap quantum critical point in cuprate superconductors [316].

The thermal entropy for different temperatures and N = 12,16, 18 is shown in Fig. 7.2(d).
Again we observe maxima at dopings between p = 0.20 and p = 0.40 depending on tempera-

ture. At T = 0.05 the maximum is attained at

P~ 0.296 + 0.025. (7.4)

We refer to the supplement E for more discussion of the T" dependence of the thermal entropy.
To access the limit T" — 0 we calculate the von-Neumann entanglement entropy of the ground

state,

SuN(A) = —Tr[palog pal. (7.5)
Here, pa = Trp(|vo) (Yol) is the reduced density matrix of the ground state |¢9) on a subsys-
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tem A. B denotes the complement of A. Results for Syn(A) for subsystem sizes M = 1,2, 3,4
and total system sizes N = 10,12,16 are shown in Fig. 7.3. We find that the single-site
(M = 1) and two-site (M = 2) entanglement entropy are well converged as a function of total
system size N. For a N = 16 site cluster and M = 4 we estimate we estimate the maximum
to be located at,

P~ 0.285+0.024 [from Syn(A)], (7.6)

in agreement with our estimate obtained from the thermal entropy at 7" = 0.05 in Eq. 7.4.

Finally, we investigate the charge susceptibility (compressibility),

on 9%e\ ! 9%\ !

v (o) - () o
computed by taking the inverse of the second derivative of the internal state energy density
e = E/N w.r.t. doping p. Here, the chemical potential is given by pu = de/On. Results
for different temperatures at N = 18 are shown in Fig. 7.3(b). At temperatures T'= 0 and
T = 0.1 we detect a maximum at doping p = 1/3. We observe a shoulder-like feature at lower
doping. At higher temperatures T" = 0.3 and T" = 0.5 this feature develops into a maximum
at p =~ 0.2. We notice, that this shift matches the shift of p in the thermal entropy shown
in Fig. 7.2(b,c). We note that the occurrence of a maximum in the compressibility, specific
heat coefficient and local entanglement entropy has been recently discussed in cluster-DMFT
studies of the Hubbard model without randomness in relation to the pseudogap and Mott

critical points [145, 464, 498, 499].

7.4 LUTTINGER’'S THEOREM

Having found strong signatures of a spin glass phase persisting from half filling up to p. ~ 1/3,
we now provide evidence of a Fermi liquid phase at higher values of doping, which vanishes at

a critical value of doping near the onset of spin glass order. To verify the presence of a Fermi
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Figure 7.3: (a) The ground state entanglement entropy Syn of subsystems of size M. Results
are compared for total system size N = 10,12, 16, shown as increasing opacity. The maxima
are attained at values close to p = 1/3, indicated by the gray dashed line. (b) Charge
susceptibility y. for different temperatures at N = 18. The low-temperature maximum at
doping p = 1/3 is shifted towards a smaller doping p =~ 0.2 at higher temperatures.

liquid phase, we introduce the one-particle energy distribution function,

> (i) (el GIA)

ijo

N(e) = % ZA: 5e— &) (7.8)
where |\) are the single-particle non-interacting eigenstates with energy €y, obtained by di-
agonalizing the hopping matrix ¢;;. This quantity is analogous to the particle occupation
number in momentum space, n(k), commonly used in systems with translational invariance.
For a non-interacting system with fixed particle number n, the averaged quantity /\Te) con-
verges to D(e)f(e —ep), where D(e) is the single-particle density of states and ep is the Fermi
energy, defined by:

€

D(e) = %25(6—6)\) , n:2/ FdeD(e). (7.9)
A

—0o0
For the interacting system, we show in the supplemental material E that, because the random
couplings are all to all, N'(e) displays self-averaging properties in the thermodynamic limit

N — oo. In this limit, the signature of Luttinger’s theorem is a discontinuity of N (€) at the

non-interacting value of ex defined in Eq. (7.9).
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Figure 7.4: (a) At high values of doping, the one-particle energy distribution function drops
sharply near the energy level predicted by Luttinger’s theorem (marked by crosses). At
lower values of doping, this function becomes more broadened, suggesting a breakdown of
Luttinger’s theorem. (b) A comparison of the Fermi energy given by Luttinger’s theorem
and the numerically-computed value given by the inflection point of the one-particle energy
distribution function. For a 16 site cluster, the two show good agreement up to a critical
value between 6/16 = 0.38 and 7/16 = 0.44, in contrast with the same quantity computed for
free fermions which agree well for all values of doping.

In Fig. 7.4, we plot the quantity N(e€)/D(e), averaged over 1000 realizations on a 16-site
cluster. The density of states D(¢) is a semicircle distribution in the large- N limit; however, in
order to account for finite-size corrections to this distribution, we instead use the numerically
calculated value of D(e) obtained from our data. Although the drop in particle occupation
at the Fermi energy is substantially broadened due to interactions and finite-size effects, the
location of the inflection point still reliably tracks the location of the Fermi energy predicted
by Luttinger’s theorem at high values of doping as shown in Fig. 7.4. The effects of the
infinite-strength Hubbard repulsion becomes stronger at lower values of doping, eventually
causing a breakdown of Luttinger’s theorem at a critical doping 0.38 < p. < 0.44, which is

also the location where spin glass order appears to emerge.

7.5 DIScussiON AND CONCLUSION

Our numerical results demonstrate a transition in the random all-to-all ¢-J model from a spin
glass to a disordered Fermi liquid at a critical value of doping. The near-critical behavior

has similarities to the criticality of SYK models, consistent with recent theoretical propos-
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als [228] and numerical results on related systems [73]. We find a near-critical dynamic spin
susceptibility which is consistent with the SYK behavior x”(w) ~ sgn(w) [1 — g|w| + ...] over
a significant frequency regime; the g term is a universal boundary “graviton” contribution.
This is the first appearance of such features in a doped spin-1/2 SU(2) model. SYK criticality
also predicts an extensive zero temperature entropy: we do find a maximum in the entropy
near the critical point, but our finite-size data does not allow us to identify if there is an
extensive contribution. However, we note that for SU(M = 2) models, SYK criticality is pre-
empted at small enough T by a spin glass instability [118, 156], and so the extensive T' = 0
entropy is not ultimately expected. We also find a maximum in the entanglement entropy,
specific heat coefficient, and compressibility near criticality.

An interesting observation is that the breakdown of Luttinger’s theorem coming from high
doping, as well as the vanishing of spin glass order from low doping, occurs near p = 0.4, which
differs from the maxima in the thermodynamic and entanglement entropy closer to p = 0.3.
While the system sizes accessible to our methods are relatively small and only discrete values
of doping are accessible, recent (E)DMFT calculations of the ¢-J model with finite Hubbard
repulsion [118] also give evidence of SYK criticality occurring at a lower value of doping than
the spin glass/Fermi liquid transition. These observations are consistent with the spin glass
instability of SYK criticality for finite M [156] noted above. Understanding the nature of this
separation, and the very low T' at which the spin glass instability of SYK criticality appears,

remain open questions to be explored.
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George E. P. Box

Conductance and thermopower fluctuations in interacting quantum dots

8.1 INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [246, 421] is a strongly interacting quantum many-body
system without quasiparticle excitations, whose exact solvability in the large-N limit - with
N the number of sites - has led to significant interest in it both as a toy model for non-Fermi
liquid behavior as well as an analytically tractable example of holographic duality [85, 248].

In contrast to its analytic solvability, experimental realizations of the SYK model have
proved to be challenging. The SYK model is defined microscopically as a system of fermions
with random all-to-all quartic interactions, and is unstable at low temperatures to single-
particle hopping. As such, any experimental proposal must generate strongly-disordered
interactions with a high degree of connectivity, while simultaneously quenching any single-
particle hopping terms. Several promising proposals have been made to this extent, involving
Majorana zero modes [82, 365], quantum processors [25, 149], ultracold gases [102, 487, 507]
and disordered graphene flakes [59, 78]. Simulations of the SYK model have been achieved
on quantum processors [214] and controllable nuclear-spin-chain simulators [298]. Our study
here was motivated by experiments on disordered graphene flakes [14], results of which will

be reported in a separate paper [15].
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Each experimental realization of the SYK model will have a different set of observables
that it is best suited to study. Our focus will be on proposals for realizing the SYK model
with complex fermions in a disordered graphene flake, for which the measurable quantities are
thermoelectric transport observables, such as conductance and thermopower. Theoretical pre-
dictions for the average values of these quantities have been calculated [261, 358] for realistic
models that include both SYK terms and experimentally-relevant perturbations. The conclu-
sion of this analysis is that thermoelectric quantities display a crossover from Fermi liquid-like
behavior at temperatures below a coherence energy FEco, = t2/.J, where small single-particle
hopping terms, with r.m.s. value ¢, produce coherent quasiparticle excitations, to SYK-like
behavior at temperatures E., < T < J, where T is the temperature, and J is the r.m.s.
value of the SYK interactions.

In experimental realizations of these mesoscopic systems, transport quantities such as the
conductance and thermopower will display sample-to-sample fluctuations, or alternatively
fluctuations as a function of tuning external parameters such as chemical potential or magnetic
field. For weakly-interacting disordered quantum dots at zero temperature coupled to broad
multi-channel leads, this results in the well-studied phenomenon of wuniversal conductance
fluctuations (UCF) at zero temperature, where the conductance displays O(1) fluctuations
(in units of the conductance quanta, e?/h) whose magnitude is independent of the disorder
strength [10, 12, 272, 273]. An analogous treatment of disorder fluctuations in strongly-
correlated quantum dots has not been explored previously. In this work, we analyze the
fluctuations in transport properties in quantum dots with strong SYK interactions, and study
the behavior of these fluctuations as their average values crossover from Fermi liquid-like for
T < Eeon to SYK-like for T > FE..,. We contrast analysis of these properties in the SYK
regime, which involve statistical fluctuations of the single-particle Green’s function, with the
large body of work analyzing statistical properties of the many-body spectrum [8, 95, 218, 406].

In this work, we analyze the conductance and thermopower fluctuations of a closed inter-
acting quantum dot, with sufficiently high tunneling barriers such that transport quantities
can be inferred via equilibrium properties of the isolated quantum dot. Within this frame-
work, we find that variance of the conductance in the Fermi liquid regime displays a 7!

falloff at higher temperatures, consistent with prior studies of weakly-interacting disordered
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quantum dots [125]. However, we find a surprising feature of these fluctuations for tempera-
tures larger than the coherence energy. In contrast to the mean values of transport quantities,
whose behavior for T' > FE o, is well-described by a pure SYK model (¢ = 0), the same is
not true for the variance - at leading order in N~!, the variance of the conductance for a
pure SYK model is distinct from the variance in a model with SYK interactions and random
hopping with r.m.s. value ¢, provided ¢ > vT'J /N. The self-averaging properties of the pure
SYK model are so strong that, to leading-order in N !, fluctuations of the physical transport
properties remain driven by fluctuations of random hopping terms, even if their mean values
are well-described by the pure SYK solution. Distinct predictions are still found for the two
temperature regimes, arising from the different form of the average spectral function in the
two limits, and we find a T2 suppression of the conductance variance in the SYK regime in
contrast with the 7! Fermi liquid prediction.

These aspects of our results are illustrated by the following summary of our prediction for

the mean (o) and variance of the electrical conductance (o):

OFF X 1;1621 , Var opp (I‘;Q>2 ﬁ (8.1)
TSy K X Fj\/% , Var ogyg (1:2)2 N%JT (8.2)
TiSY K X F;ii , Var oy g x (I‘;2>2 NLJT’ T < Econ (8.3)
OtSY K X F;\/E—T ,  Var opsy g X (I:Q>2 ]\f;ig, Eon <T < J (8.4)

Here (i) F'F refers to the free-fermion results in Section 8.3.1 with I' a measure of the coupling
to the leads, and the various of opp crosses over to the UCF value when T < I'2/Nt; (ii) the
pure SYK results are in Section 8.4.1; (i) tSY K refers to the model with both hopping and
interactions with ¢t < J, E.on = tQ/J, the results for T' <« E.o, are in Section 8.5.1, and the
results for E,, < T < J are in Section 8.5.2 (£ is a measure of the particle-hole asymmetry).
All these results are obtained for the case where the coupling to the leads, I', is the smallest
energy scale, and to leading order in a 1/N expansion.

Note that in all cases, the effect of the SYK interactions is to reduce the strength of the

conductance fluctuations:
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(7) Eq. 8.2 is suppressed by a factor of 1/N? in contrast to 1/N in all other cases,
(7) Eq. 8.3 is smaller than Eq. 8.1 by a factor of ¢/.J, and
(7i1) Eq. 8.4 is smaller than Eq. 8.3 by a factor of E.on/T.

The structure of this paper is as follows. In Section 8.2, we make explicit the setup of our
theoretical model as well as the assumptions used in calculating thermoelectric quantities.
In Section 8.3, we calculate the fluctuations of transport quantities in the non-interacting
limit, where properties are governed by single-particle random matrix theory (RMT). We
emphasize that this approach is distinct from more standard approaches of modeling UCF
phenomena using RMT [33], where calculations are done at zero temperature and involve
the statistical treatment of transmission eigenvalues. Our treatment is primarily done at
non-zero temperature and in the limit of weak environmental coupling, although we show
that it is possible to extend our results down to zero temperature and recover O(1) universal
fluctuations in an appropriate limit. In Section 8.4, we study transport fluctuations in the SYK
regime, presenting results both for pure SYK as well as more realistic models with random
single-particle hopping. In Section 8.5, we study a model with both SYK and random hopping
terms and demonstrate that the transport fluctuations for T' > F), are qualitatively different
than that of a pure SYK model.

In each of these sections, we discuss the fluctuations of the thermopower in addition to
the conductance. The statistical properties of the thermopower require more care; in our
formalism, we find that the thermopower is determined by a ratio of two Gaussian random
variables, and hence the variance is formally not well-defined. An approximation to normality
is still appropriate in certain parameter regimes for small fluctuations around the mean, and
hence we can formally define a variance within this approximation. We state results given
this assumption and find qualitatively similar behavior as the conductance variance, which
is that the presence of strong SYK interactions serves to reduce the fluctuations around the

mean value.
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8.2 SETUP

8.2.1 HAMILTONIAN AND TRANSPORT COEFFICIENTS

Our goal is to characterize fluctuations in transport properties of disordered quantum dots

with random all-to-all interactions. We model this quantum dot by the Hamiltonian

1
Hyor = W Z,;l Jij;klc c .cpc + N1/2 thjczc] ,ch Ci (8.5)
if;
where J;;.,; and t;; are complex random numbers with zero mean and variances J? and t2,
respectively. The complex SYK model is given by the first term, whereas the second term is
a random single-particle hopping which leads to Fermi liquid behavior at low temperatures.
The quantum dot is coupled to two leads. Following the approach of [158], we model the

leads by considering the Hamiltonian

H = Hgo + Zeqa aq + Z [ zac Aga + Ajga qacl . (8.6)

7q7

where a = R, L labels the right and left leads. To parameterize the coupling to the leads, we

define the matrices

Fiaj = 7"—,Olea,d,(y)\ioz>\;fo¢ ) (87)

where piead, is the density of states in lead o near the Fermi level. We will assume pieaq,r, =
Plead,R = Plead-

We will find that the nature of the conductance fluctuations depends sensitively on how
we model the coupling to the leads, \;o. This is in contrast to the mean values of transport
quantities, which is not as sensitive. We first make the assumption that the two couplings
are proportional to each other, i.e. \;r = a\;;, for some constant a. With this constraint,
it becomes possible to express transport properties solely in terms of the equilibrium Green’s

functions of the quantum dot. Using expressions derived in [94], we define

oo

a+b— R
ﬁab:—% _Oodww o2 () Im T [I‘G ] ,
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with G™4(w) the local retarded and advanced Green’s function of H, both N x N matrices,
f(w) the Fermi function f(w) =1/ (e*/T +1), and T = T*TE/ (T'F 4+ T'®). For cases where
the matrix I'” + T'f is non-invertable, this equation is modified by omitting the null subspace
of the matrix. The Green’s functions must be solved for the full Hamiltonian, including the
coupling to the leads; however, we will primarily be focused on the parameter regime where
I" is the smallest energy scale and the Green’s functions of the isolated system Hgot are used.

The electric conductance o, thermal conductance k, and thermopower © are given by

2
U:€2£11, K:B<£22—£12>7

B L12
0==-—=
L11

eLn’ (8.9)

where = 1/T.
Beyond this point, we must make further assumptions on the nature of the coupling to the
leads. For notational simplicity, we will assume A\;g = \;;, = \; - generalization to the case

where the magnitude of the couplings are asymmetric does not qualitatively affect our results.

SINGLE SITE LEAD COUPLING

In this model, we take our two leads to be coupled to a single site, i.e. A\; = d;:\. Defining

I'= 7rplead\)\]27 we have

21 [

ab = — dw w72 f(w)Im GR (w) (8.10)
Th J_o

Recall that the Green’s functions are dependent on the random variables J;j.1;,t;;. Averaging

over disorder, we find that ImGE (w) = N713 . ImGE(w) = ImGf(w). Note that this
relation relies on neglecting corrections to G arising from the couplings to the leads, as
these corrections will be site-dependent.

Higher moments of these transport coefficients are given by

2r

2 roo
cabﬁabcabcaF(m) [ dwdesr et ) o 1D
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where we define

pa(w, €) N2Z[ImGR ImGR()—ImGg(w)Imej(e)] (8.12)

The subscript d indicates that this quantity describes the covariance of the diagonal compo-

nent of the Green’s function, Gﬁ.

ALL-TO-ALL COUPLINGS

Here, we take the leads to be coupled to all sites with equal hopping, A\; = \/% This model is
also appropriate for hoppings that are equal in magnitude but with site-dependent phases, as
the overall phase can be absorbed by a unitary transformation on the quantum dot operators.
Defining I'' = ﬂplead])\|2 as before, we have

E
mh

o0 S
Loy = / dw w72 f(w)Im GR( )= / dw w72 f(w)Im GR(w) .
—00
(8.13)
where we utilize the fact that Gf}(w) = 0 for ¢ # j. The overall scaling of N “3 in A; was

chosen such that the mean value of the conductance is consistent with the previous model.

The second moment is given by

Eabﬁab ab »Cab NQ Z < > / dw de wa+b72€a+bi2f/(w)f,(€) [,Od(w, 6) + po(wv 6)] :

ij,kl
(8.14)
where now we define the off-diagonal Green’s function covariance,
pol,€) = Z [ImGR ) Im GT(e) - Im GE (w) Im G ()| . (8.15)

DISORDERED ALL-TO-ALL COUPLINGS

If our sites physically correspond to spatially random modes, as is the case in graphene
realizations of strongly interacting quantum dots in the zeroth Landau level, then it may be

appropriate to model the coupling to the leads as additional random variables. To analyze

201



Chapter 8. Conductance and thermopower fluctuations in interacting quantum dots

this case, we treat \; as Gaussian random variables:

(8.16)

— 2
which in turn implies that I'f; = 61-]4% = 625%. Crucial to the calculation of fluctuations,

we note the identity

T 2
F%P/gl = (N) (030Kt + 0udjn) - (8.17)

The average values of the transport coefficients are the same as in the previous models. Using

the relation

2r

2
CE+TEHTE+T)) = (N) (0i50k1 + 0atdjk) (8.18)

we can obtain higher moments of the transport coefficients. This leads to a result for the
variance almost identical to the uniform all-to-all couplings in the previous section. The
crucial difference is that in this case, the disconnected component of p,(w,e€), defined in
Eq. 8.15, is not subtracted off in the expression for the variance of L,,. The consequence of
this is a trivial contribution to the variance of L,;,, which is given by N —1@2 and can be
thought of as being driven by the disorder in the leads in contrast to the intrinsic disorder in
the quantum dot. While this is suppressed by a factor of N~1, we will find that fluctuations
generically only appear at the order or higher, so this contribution cannot be disregarded on
these grounds.

We have shown that the variance of transport quantities, such as the conductance, are
determined by the single-particle Green’s function covariances pg, po,. The primary focus
of our paper will be an analysis of these functions, and their implications for conductance
fluctuations. For concreteness, we will give our predictions for conductance fluctuations in
a model with uniform all-to-all couplings, such that both p, and p; contribute, and so that
there is no trivial contribution to the variance arising from disordered leads. We summarize

results for single-mode couplings in Appendix F.4.
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8.2.2 COMPARISON TO OTHER ANALYSES

Due to the extensive literature on conductance fluctuations in mesoscopic systems, we make
precise here the connection between our setup and prior work.

The most well-established results for conductance fluctuations pertain to the 7' = 0 con-
ductance of a sufficiently weakly-interacting quantum dot such that a single-particle picture
is appropriate. In this limit, conductance fluctuations can be understood most directly via
a random matrix analysis of the scattering matrices, which take values in the circular en-
semble [29, 216]. An alternative approach, suitable for studying the effects of non-zero tem-
perature and weak magnetic fields, is to start with a microscopic single-particle Hamiltonian
modeled as a random matrix, much like our Hamiltonian in the limit J = 0. In the non-
interacting limit, the conductance for a generic set of lead couplings A;z, A;r is given by the

Landauer formula for a single channel,

e

2
4 / dw ! (@)Hw)t (@)

t(w) = 27 pread Z NG (@)AjR -

ij

g =

(8.19)

The conductance variance is thus related to the disorder average of four copies of G, solved
in the presence of the leads. This becomes a tractable problem in the limit where the number
of channels in the leads is large, and can be dealt with rigorously using supersymmetry
techniques [125, 144, 202, 203, 489] to give results consistent with random matrix predictions.
This formulation can also be generalized to non-zero temperature [125], where a T~! falloff of
the conductance variance is observed. However, these supersymmetry techniques cannot be
generalized to accommodate strong interactions. Our results are most appropriately compared
to the prior results on closed quantum dots, where the number of channels is small and are
weakly coupled to the dot. These works have primarily focused on the 7' = 0 conductance in
either the weakly-interacting limit [309, 369], where non-Gaussian behavior of the conductance
was found, or in the Coulomb blockade-dominated limit [216] which found a non-Gaussian
distribution of the conductance peaks. To our knowledge, conductance fluctuations in the

parameter regime of closed quantum dots with 7" > I' and for negligible Coulomb blockade
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effects has not been studied previously. This is the regime where we will conduct our analysis,

as it is in this limit that the effects of strong SYK interactions becomes analytically tractable.

8.3 FREE FERMION ANALYSIS

8.3.1 CONDUCTANCE STATISTICS

We begin with an analysis of conductance fluctuations in the non-interacting limit (J = 0).

In this limit, the conductance is independent of temperature [261],

2 2 _ 2
Dyat® —p* (8.20)

e
Tg=—
h 2

In order to understand the behavior of conductance flucutations, we must calculate the single-
particle covariances pg,(w, €). This may be done diagrammatically, only keeping diagrams to
leading order in N~!. We do this by calculating the covariance of the Green’s function in
imaginary time and analytically continuing to the real axis. The calculation of pg involves
analytic continuation of the quantity 3, Gii(iw)Gjj;(ie€), and for po, 3. Gij(iw)Gjyi(ie).

Diagrams that contribute to the covariance of the Green’s function consists of diagrams of
pairs of Green’s functions that are only connected along disorder lines. The structure of these
diagrams is shown in Fig. 8.1. The diagrammatic structure of both the pg and p, fluctuations
are similar - both involve an infinite summation over a set of ladder diagrams, given in the
first figure in Fig. 8.1. The leading order contributions to p, are just given by this set of
diagrams. For pg, two additional classes of diagrams must be considered and are shown in
Fig. 8.1. The first class yields an n-fold degeneracy of ladders with n rungs, and the second
class gives additional disorder averaging on either side of the ladder rungs.

Putting all this together, we obtain the final form for the Green’s function covariances,

galiw, ic) = % S (Gl ie) — Tiw) x C3ie))
ij

1 PG(iw)*G(ie)* 1 1
T N2 [1 - £2G(iw)Gie)]? 1 — 2G(iw)? 1 — 2G(ie)> (8.21)

2G(iw)%G i€)?
goliw, i€) = % - (Gu)Grilie) - Gy () x Glie)) = jﬂ’fjg G()ug(G ()ie)
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where in the RHS, we use the average Green’s function
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Figure 8.1: Ladder diagrams that contribute to the fluctuations of the single-particle spectral
function. The first class of diagrams contributes to both the covariances pg and p,, with
the contribution to pgy coming from the ¢ = j case. The last two classes only contribute to
pq. Disorder-averaging of the single-particle hopping (SYK interactions) is represented in red
(blue).

. w + .sgn(w ;
Go(iw) = 2t2“ —i g2t(2 )\/4t2 + (w—ip)2. (8.22)

To obtain expressions for p, 4, we analytically continue these to the real axis,

o= = [0, €) + a6, ) = g™, ) = gal®, )] (329

where w® = w 4 in, n — 0. The expression for pg has been derived before using a similar

diagrammatic approach [55], although we are not aware of an analogous calculation for p,.

From this analysis, we see that fluctuations arising from p, are enhanced relative to the pgy
fluctuations by a factor of NV, and hence will be the main focus of our analysis. However, we
will show that a more careful analysis of pg will be necessary to recover UCF behavior at zero
temperature.

Due to the form of the average Green’s function, we find a singular behavior for the Green’s
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function covariances in Eq. 8.21 for |w — €| — 0, as

1—9G@ﬁﬂ%€):1<—n+;@r—d>+0«wﬁﬁxdw%,

séﬁRehdw—eb2—nP]

polen) = g3 e | s |

pd(wa 6) ==
(8.24)

The above divergence holds for arbitrary chemical potential u. We see that the (w — ¢) =2
divergence in py(w,€) is independent of the energy scale t. The correlation function pg de-
termines fluctuations of the single-particle energy levels - for the non-interacting system, the
distribution of single-particle energy levels is determined by the Gaussian Unitary Ensemble
(GUE) in which fluctuations are known to take this universal form [55, 121, 122].

For T' #£ 0, this divergence may be regulated by carefully taking the n — 0 limit in the
analytic continuation to the real axis. We state the calculation in a general form, for use later.

For real-valued functions A(w), B(w), and p(w — €) = p(e — w), we have the identity
/ dw de A(w) B(e)p(w — €) = V37 / dk Re [A(K)B*(4)] k). (8.25)

where we define the Fourier transform A(k) = \/%7 [ e k= A(z) da.

The Fourier transform of the Green’s function covariances are:

~ oy _ 1 T
V21

Go(k) = Y22
Po(k) AN

This analysis for pg recovers the well-known Dyson-Mehta formula for the variances of linear
statistics in RMT [121, 122], and the more general covariance formula for linear statistics [97];
however, these fluctuations are a factor of N~! smaller than the contributions from p, fluc-

tuations.
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This formula yields the result for the conductance variance,

F€2 2 2
Var o 8.27
' ( h > 3mtTN’ (8.27)

which agrees well with a numerical simulation, shown in Fig. 8.2. This expression is valid for
I'? « NTt, as suggested by the T — 0 divergence. In order to obtain results for 7' = 0, a

more careful treatment of the coupling to the leads is required.

17.5 e Conductance, N = 200 .
0.064 * °*’ e Thermopower, N = 200
15.01 —— Conductance, analytic
0.054 o —— Thermopower, analytic |
12.5 o
®  Conductance, N = 200 g
0.04+ =
g o e Thermopower, N = 200 g 10.0
i — Conductance, analytic -
1 X =
0.03 —— Thermopower, analytic = ! D
0.021 5.0
0.014 2.5
0.001— : : : - 0.0 : - : :
5 10 15 20 25 5 10 15 20 25
St Bt

Figure 8.2: We plot the mean and variance of both the conductance and thermopower, cal-
culated in the non-interacting (J = 0) limit of our disordered quantum dot and using Eq. 8.8
averaged over 100000 realizations of the hoppings ¢;;. We set the chemical potential u = 0.33.
In this calculation, the Green’s function of the quantum dot is solved independent of the
leads. We set the strength of the leads coupling I' = 0.1 in order for the mean thermopower
and conductance to have comparable magnitudes, although we emphasize that this value only
appears as an overall coefficient in the conductance. These numerical results are compared
with the analytic predictions given in Eq. 8.27 and Eq. 8.34, which show good agreement.

To obtain a T" — 0 result, we must include the self-energy arising from the coupling to
the leads. The form of this correction is dependent on the manner in which we choose the

coupling. For uniform all-to-all couplings, we have

N p(ﬁ)’)\F ~ E ].98
Y (iw) —2/de o O N sgn(w) (8.28)

where p is the density of states in the leads, which we approximate by its value at the Fermi
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level. To leading order in T,

2iTGo(iw)?

N sgn(w) (8.29)

Gij (zw) = 5ijG0(iw) +
Using this result for G in Eq. 8.21, we can directly evaluate the T" = 0 conductance fluctuations
9 1

32
I'?p,(0,0) = O(T/t), (8.30)

vt =0 = (£) (o)

Note that in this case, pg and p, contribute at the same order; the 7' = 0 divergences are reg-
ulated by an O(N *1) self-energy, and p, is more singular at T' = 0. We stress that this result
is not rigorous - as evident from the above results, this manner of including the corrections
from the leads is not done consistently in an N~! expansion. A proper extrapolation down

to T' = 0 necessitates, for example, the use of supersymmetric techniques [202].

8.3.2 THERMOPOWER STATISTICS

Although less well-studied than conductance fluctuations, thermopower fluctuations have been
studied analytically for single-mode contacts at 7' = 0 [488] and for broad contacts [130].
Experimental measurements [147, 159] have found good agreement with these predictions.
Our analysis will fall in a distinct parameter regime to these results, where we consider
a quantum dot weakly coupled to its environment, at temperatures much larger than the
coupling strength.

In the free fermion limit, the mean thermopower vanishes linearly with temperature [261]

T

O= w2

(8.31)

The linear temperature dependence is a consequence of the linear temperature dependence of
the entropy, and hence is generic for systems with quasiparticle excitations.
In our framework, the statistical properties of the thermopower is determined by the ratio

of two random variables, £12 and L£11. As higher order moments are suppressed by addi-
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tional factors of N™!, our transport coefficients are Gaussian to leading order in N~!'. The
thermopower distribution is then determined by the ratio of two Gaussian statistics, which
in general is non-Gaussian. Nevertheless, an approximation to Gaussian is appropriate [189]
for capturing small fluctuations around the mean value, so long as the width of the Gaussian
distribution is small relative to the mean. We provide more details on this approximation in
Appendix F.3. A similar approach was used to characterize fluctuations of the Fano factor
in weakly-interacting quantum dots [96]. Such an approximation requires knowledge of the

covariance of the two quantities £12 and L£17. This is given by

2
Cov(a 1) = - (17 ) [ Qe )7'€) ) + pois ] (5.32)

which vanishes by an application of Eq. 8.25. Therefore to leading order in N~!, the random

variables £11 and L2 are both uncorrelated and have a bivariate normal distribution, so we

treat them as independent. With this assumption, the typical fluctuations of ® around its

Ly

2 are Gaussian with variance
11

mean value g

Var ©  Var L1 Var Ly

— = T — > 8.33
o’ £112 £122 (8.33)
with )
r 2 — /42 — p?
Var £11 =\ = EH = *7“
h) 3nNTt h 2nt?
r\?(#2-6)T — T  «ul?
Var Lo =~ ) — 2" [lg=-—2— "2 | (8.34)
At <h> 9T Nt 2 h6t2\/4¢2 — 112

This analytic prediction agrees well with the numerically calculated variance, shown in Fig. 8.2.
Similar to the conductance variance, the thermopower variance scales as T~! at low temper-
ature, although the fact that the mean value scales linearly with temperature means that, in

contrast to the conductance, the variance normalized by the mean squared diverges as T5.
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8.4 PURE SYK ANALYSIS

8.4.1 CONDUCTANCE STATISTICS

We now move to an analysis of conductance fluctuations for a pure SYK model (¢ = 0), where

the average value takes the form at half-filling

€2 0.72T

T (8.35)

o =

(the exact value of the prefactor is 2127~ /4T'(3/4)I'(1/4) ~ 0.72). Deviations away from
half-filling only constitute a change in the numerical coefficient. For full generality, we present
results for an SYK,; model with g-fermion interactions - the case ¢ = 4 is the one of experimen-
tal relevance. The diagrammatic prescription for calculating the Green’s function covariances
Pd, Po remain the same, and we consider pairs of Green’s functions that are only connected
via disordered lines. The N scaling of disorder-connected diagrams has been considered in
SYK-like models previously [168, 248, 446, 503], although an explicit evaluation of such di-
agrams has only been carried out for the off-diagonal covariance, p,, in the Majorana SYK
model [503].

The simplest leading-order diagram, which contributes to both pg and p,, is shown on top
in Fig. 8.3. This contributes to p, with coefficient N'~9 and pg with coefficient N~%. The
different coefficients arise because the pg contribution appears with a factor of d;;. We find
that pg contains additional “ladder” diagrams as shown in the bottom of Fig. 8.3 that also
contribute at O(N~9).

Both these covariances can be evaluated analytically in the conformal limit, when g8J > 1.
To see this, we examine the first diagram, in the top of Fig. 8.3. In the conformal limit, the

Green’s functions take the following form:

s L / 12T} — 5% +1i€
QR(W,T) = —ie (co;TQ@)l 4 <271T> r E;; _ ;‘; 4 igg (8.36)
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1 —> <> J
b)
+4 H+(%—1)2‘1 +...

Figure 8.3: a) The leading-order diagram for a pure SYK model that contributes to the Green’s
function covariance. This contributes to p, with a factor of N'=9, and the specialized i = j
case contributes to pg with a factor of N™%. b) For the diagonal covariance pq, the diagram
in a) is the first in an infinite series of diagrams, generated from the first by attaching ladder
rungs to either the top or bottom diagram in the manner shown here. We have deformed the
diagram from a) in order to more clearly illustrate the structure of the ladder rungs.

where 6 and & characterize the spectral asymmetry and are related to the total charge Q by

1 | sin(n/4+0)

&€= o sin(r/4 —0)’ (8.37)
Q_l_g_sin@ﬁ) '
2 7 4

We have the bounds —% <0< % which implies 0 < Q < 1, and the particle-hole symmetric
point is Q = % Note that in contrast to the free fermion case, the SYK solution is most easily
analyzed in the canonical ensemble with fixed charge Q. These Green’s functions satisfy the
Schwinger-Dyson (SD) equation ¥ (w)G(w) = —1, %(r,72) = J*G (71,72)% (=G(r9,71))2 L
We can evaluate the 7 integrals of the top and bottom part of the Feynman diagram indepen-
dently. Making use of the conformal SD equations, we find that each of these parts evaluates

to
J? / dr, dm, G(71, 74) G(7a, Tb)%(—G(Tb, Ta))%_lG(Tb, T2)

(8.38)
= /dra dry G(11, 7)) X(Ta, T6) G(T, T2) = —G(T1,T2) .
A careful analysis of combinatoric factors from the disorder lines yields the result
2)(q/2 —1)!
po(w,€) (a/2)!a/ ) Im [G*(w)] Im [GF(e)] . (8.39)

Na-1
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For calculating pg, the summation of ladder diagrams in Fig. 8.3 must be carried out. These
ladder diagrams are well-studied in the SYK literature; in particular, evaluation in the strict
conformal limit often leads to a divergent summation, with the regularizing near-conformal
corrections taking a universal form that reflect the underlying dual quantum gravity descrip-
tion. This divergent summation is a consequence of “resonant” eigenfunctions of the ladder
kernel which have eigenvalue unity. Remarkably, there is no such effect in this class of ladder
diagrams - because of the relation in Eq. 8.38, we find that the conformal Green’s function is
an exact eigenfunction with eigenvalue ¢ — 1, and therefore no resonance occurs. Because of
this, the ladder diagrams may be evaluated via a geometric series to obtain the result

paliw, )4 2);(2% D! 1 [6R ()] m [GR ()] - (8.40)

To leading order in N~!, the conductance fluctuations are driven by p,. The fact that p,

factorizes into two copies of the spectral function leads to the simple result,

Var o 2)!(q/2 — 1)!
= (a/ )]&/_1 iy (8.41)

The statement that the variance divided by the mean squared takes the above form holds for
any linear statistic A of the spectral function, A = [*° dw A(w) Im GF(w).

For the SYK model with four-fermion interactions, this gives

€2\ * 1.0412
Var o — ‘ 8.42
o ( h> N3JT (8.42)

We compare this result to numerical calculations of the conductivity variance using exact
diagonalization, shown in Fig. 8.4. We also plot the mean values, which show decent agreement
with their respective analytic predictions despite the relatively small system sizes. Recall that
Eq. 8.41 is only valid in the conformal limit, where 5J > 1. For finite size systems, we also
require 5J < N due to Schwarzian fluctuations setting in at lower temperatures [168, 249,
254, 303]. Exact diagonalization studies are restricted to small system sizes, with N = 12

the maximum size studied here. This implies a rather narrow temperature window where
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Figure 8.4: We present numerical results for the conductance and thermopower of a complex
SYK model, for even system sizes 6 < N < 12. All results are averaged over 10° realizations
with J =1, u = 0.05. a) The average thermopower, and conformal prediction. b) The average
conductance, and conformal prediction. c) The system size scaling of the conductance and
thermopower variance, obtained by fitting the variance as a function of N to a power law
at each temperature. d) We Temperature dependence of the normalized conductance and
thermopower variance for 6 < N < 12, both rescaled by their appropriate system size - N3
for conductance and N2 for thermopower. Darker plots indicate larger system sizes.
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conformal behavior could be expected. We are unable to establish the constant temperature
dependence predicted by Eq. 8.41; however, the predicted N~3 scaling is expected to hold
even at higher temperatures, away from the conformal limit, and this is validated by our

numerical results.

8.4.2 THERMOPOWER STATISTICS

We now analyze statistics of the thermopower, where the extensive entropy leads to a constant
thermopower

0=_—-¢. (8.43)
3e

Recall that the thermopower is given by the ratio of two random variables, whose linear
covariance vanished in the free fermion limit. Strikingly, the opposite behavior is true for
an SYK model. To quantify this, we examine the Pearson correlation coefficient of the two

random variables A and B,
_ Cov(4,B)
~ VVar Ax Var B

B (8.44)

ra,B lies between —1 and +1 and measures the degree of correlation between two random
variables. For the SYK model, a particular property of p, is that it that it factorizes into a
product a(w)a(e) to leading order in N~!. Therefore, in sharp contrast to the Fermi liquid
regime where the variables £11 and L2 were uncorrelated, we generically expect 74 p =
1-O(N7Y).

Despite this, we may still approximate our distribution as Gaussian. The approximation to
normality of the distribution of two correlated Gaussian random variables follows along similar
lines as the uncorrelated ratio [189], which we also discuss in more detail in Appendix F.3.

Defining r as the correlation coefficient between L£11 and L2,

Var ©  Var L3 N Var L1 2ry/Var £q1 x Var L2

2 T =2

— — — 8.45
© £11 £122 £11£12 ( )

Both £11 and £15 are linear statistics, so the conformal prediction of V%g“ = V%%“ leads to
11 12
a vanishing thermopower variance. The leading order non-zero result in the conformal limit is

hence suppressed by an additional factor of N~!. However, high-temperature non-conformal
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corrections will still give an (’)(N 1_‘1) contribution. Additionally, corrections higher order in
I' arising from hybridization with the leads may also produce (’)(N 1*q) corrections, albeit
strongly suppressed as I' — 0.

Surprisingly, we find strong disagreement between this prediction and the exact diagonal-
ization in Fig. 8.4. The thermopower variance in the temperature regime £J > N~ is well fit
by a N2 scaling, rather than the N~ high-temperature contribution or the N~* conformal
contribution. This arises due to an anomalous N2 scaling in the variance of the numera-
tor, L£15. As this quantity is proportional to the particle-hole asymmetry, we conjecture that
this is related to additional fluctuations in the asymmetry not captured by our diagrammatic

approach.

8.5 INTERPLAY BETWEEN HOPPINGS AND INTERACTIONS

In the previous sections, we have derived results for the conductance variance for both the
limiting cases of non-interacting fermions with random hopping and a pure SYK model. In this
section, we more carefully analyze the physically-relevant model with includes both random
hopping and SYK terms.

Analysis of crossover behavior in these models has been performed previously [261, 353, 461]
for the average values of observables. The conclusion of these analyses is that there exists
a coherence energy scale E o, = % such that transport properties closely resemble the free
fermion model for temperatures T < FE.on, with SYK behavior emerging for T° > FE.on
(throughout this analysis, we assume 7" < t,J). The source of this behavior lies in the
solution to the set of Schwinger-Dyson equations for the average value of the Green’s function,
which is exact in the large-N limit:

G iwn) ™" = —iwy, + p — 3G (iwy) — B(iwy)
(8.46)

(1) = —JQGZ(T)G(—T).

It is this Green’s function that displays a crossover at T' ~ E.y, from the free fermion-like
solution to an SYK-like solution, which in turn leads to a crossover of the average values of

transport properties.
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In contrast, we claim that the variance of transport quantities displays a qualitatively
different type of crossover behavior. This is a consequence of the free fermion variance in
Sec 8.3 and the SYK variance in Sec 8.4 containing different powers of N. Fluctuations
driven by the randomness in SYK interactions are strongly suppressed relative to fluctuations
driven by the random single-particle hopping. As a result, to leading order in N~!, the free
fermion Feynman diagrams in Fig. 8.1 - which exist for any arbitrarily small random hopping
- are always the relevant ones for calculating fluctuation properties so long as the ratio % does
not scale with some inverse power of V. The effect of SYK interactions is to renormalize the
average Green’s functions, such that the Green’s function that appear in Eq. 8.21 are given
by the solution to Eq. 8.46 rather than just the free fermion result. One can verify that to
leading order in N~!, the inclusion of SYK interactions does not modify the diagrammatic
structure any further than this, with the exception of a class of diagrams illustrated in Fig. 8.5
- these diagrams only contribute to pg and hence will not be relevant for our analysis.

The key difference that results in the average values of thermoelectric properties being de-
scribed by pure SYK for T' > FE.., and not their variances may be best understood conceptu-
ally within the framework of the (G, ¥) action, which is worked out explicitly in Appendix F.2.
The intuition is as follows. For systems such as Hyot with random all-to-all couplings, the
fermionic degrees of freedom may be integrated out and the problem reformulated as a path
integral over bilocal fields G(71,72), X(71,72), with an action that includes an explicit pre-
factor of N; hence, the large-N solution is described by the saddle point value of this action,
which is precisely Eq. 8.46. The disorder-averaged spectral function, and in turn the average
values of thermoelectric quantities, depend solely on this saddle-point solution. This is not
true for fluctuations, which are subleading in N ! and is governed by replica off-diagonal fluc-
tuations around the large-IN saddle point. The structure of the perturbation theory around
the saddle point may be completely modified by the presence of a hopping term ¢ - Feynman
diagrams proportional to ¢t may appear at lower orders in N~!, and whose contributions will
a priori be dominant even in a parameter regime where the saddle point is well-described by
the ¢t = 0 solution.

Our approach to studying the behavior of transport fluctuations for an interacting quantum
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Figure 8.5: Ladder diagrams that contribute to the fluctuations of the single-particle spec-
tral function to leading order in N~!, for a model that includes both random single-particle
hopping and SYK interactions. Disorder-averaging of the single-particle hopping (SYK in-
teractions) is represented in red (blue). The structure of the diagrams are largely identical
to the free fermion case illustrated in Fig. 8.1, with the SYK interactions having the effect
of renormalizing the average Green’s functions. An exception to this is the additional set
of diagrams, illustrated in the last diagram, which are qualitatively distinct from the free
fermion limit. These diagrams only contribute to the diagonal covariance p; and hence will
be neglected as they are suppressed by a factor of N~ relative to the off-diagonal covariances.
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dot will again involve calculating the single-particle covariance pgo(w,€). We will work in the
regime where w, T < t,J, and the average Green’s function takes the universal form [353]

1 w T 1
6 T) =19 (g o ) = 196, (8.47)

where we define the dimensionless quantities @ = w/FEeon, 1T = T/Eeon. We find that the
system sizes accessible to exact diagonalization are inadequate for establishing even the ap-
proximate crossover of the average Green’s function; due to the narrow temperature window
N—! « T <« J,t where our analysis is valid, any crossover behavior is obscured by combi-
nation of high temperature or finite size effects. As a consequence, numerical results in this
section will be restricted to self-consistent solutions of the Schwinger-Dyson equations given

in Eq. 8.46.

8.5.1 FERMI LIQUID REGIME

For T,w < 1, it is known [353] that gR(w, T) has a Fermi liquid behavior. These properties

can most simply stated at half filling (4 = 0), where the Fermi liquid nature implies

o<1, T<1l)~ —i. (8.48)

This behavior is determined by Luttinger’s theorem, which for a generic charge Q says that

#(Q) — (i0") = po(Q) (8.49)

where 1(Q) is the chemical potential necessary to tune to the charge Q, and pp(Q) is that
same value for the non-interacting (J = 0) system. This fixes G(w — 0,7 — 0) to be
that of the non-interacting Green’s function, the latter of which we know has the property
’ g% (w —0,T — O)}2 = 1 for generic filling. This property is sufficient for recovering the
temperature-independent non-interacting prediction for the mean value of the conductance at
low temperature, given in Eq. 8.20 and likewise properly recovers the small w, € divergence of
pd.o given in Eq. 8.24. Although an explicit calculation of the conductance variance requires

knowledge of the small frequency and temperature behavior of g%, which is not fixed by
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Luttinger’s theorem, the degree of the 7' — 0 divergence and the assumption that small
frequency /temperature corrections appear at linear order in w,T imply from dimensional

analysis that
1 1

2NT NJT’
Var (T < Econ) o~ 1
(T < Egon)? NT '

Var (T < Econ) X
(8.50)

This result is confirmed by calculating the conductance variance using the Green’s function G

obtained from numerically solving the large-IN Schwinger-Dyson equations, shown in Fig. 8.7.

8.5.2 SYK REGIME

We now analyze the conductance fluctuations for T >> 1, where the average Green’s function
approaches the conformal SYK result given in Eq. 8.36. The mean value of the conductance
is then given by the pure SYK result in Eq. 8.35. Using this form of the Green’s function, we
find that the (w — €)~! divergence of p,(w,€) is no longer present. The infinite sum of ladder
diagrams that yields p, is convergent for large 7. Expanding in powers of T_l, we obtain the

leading-order expression

2T\ 1 1 o0 e 2
T>FEgp)=——) —— de ———TIm [h(z)?
Var O'( > coh) ( A tT) N7I‘5 2COS(29) |:/_oo x (1 n 61‘)2 m [ (CL') ] 5 (8 51)
fier(%_%'i'ig) '
h(z)=e 3 -

This integral must be done numerically; however, one can see that at the particle-hole symmet-
ric point (6 = £ = 0, Q@ = 1/2), the integrand vanishes. We emphasize that this expression
for the conductance variance is obtained by using the conformal SYK form of the Green’s
function and taking to leading order a large-T expansion of the integral for the conductance
variance, the latter of which is not a homogeneous function of 7. In particular, Eq. 8.51 does
not imply that the conductance variance vanishes exactly in the conformal limit when £ = 0.

Rather, the variance for £ = 0 is given by a subleading T° term. For general Q, we find that
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Figure 8.6: We plot the numerical coefficient of the leading-order conductance variance in the
conformal SYK limit, obtained by a numerical evaluation of the integral in Eq. 8.51, along
with a quadratic approximation 4.05£2.

the resulting expression is well-fit, see Fig. 8.6 by the function

2T\ 2.0282
htT) TN
Var o(T > Econ) 3.91&2

o(T > Eeon)?  NT

Var o(T > Eeon) = <
(8.52)

We see that the conductance variance normalized by the mean squared has a T~ scaling,
identical to the Fermi liquid regime. However, both quantities individually have distinct
behavior, with the conductance variance scaling as T2 for T > FE.,, in contrast to the
T~ scaling for T < FEeon. As an aside, we state the generalization to an SYK,; model
with g-fermion interactions; using the conformal Green’s function gives a 72_4 scaling of the
conductance variance, and a T%_Z scaling of the normalized conductance variance.

This crossover behavior is demonstrated in Fig. 8.7, where we solve for the conductance vari-
ance given the form of the Green’s function covariance in Eq. 8.21, where we use the average
Green’s function G (w) obtained from a full self-consistent solution of the Schwinger-Dyson
equations in real time. Details on the numerical implementation for solving the real-time

Schwinger-Dyson equations can be found in [461]. We note a unique difficulty in calculating
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the conductance variance not present in the average value, which comes from the denominator
1 — 2G*(w)G4(w) in the Green’s function covariance. As discussed previously, it is charac-
teristic of a Fermi liquid that this denominator goes to zero as T'— 0. As a consequence, the
accuracy with which one must numerically solve for G®(w) diverges as T — 0; small errors
at low temperatures can easily lead to an unphysical divergence in the conductance variance.
Our self-consistent solution for G*(w) utilizes a grid of 22® frequency points on the real axis,
which gives a sufficiently accurate solution down to 7'/ E.on =~ 0.03 and is enough to recover

the predicted T—! scaling at low temperatures.

@ Full solution
® @ @77 fit FL regime
® @ o Conformal prediction

Var o

<[y

1 1 1
10 10°

T/E

coh

Figure 8.7: For parameters J = 10, t = 0.1, @ = 0.4, N = 30, and I' = 0.1, we numerically
solve for the leading order contribution to the conductance variance in the large-N limit
by solving the Schwinger-Dyson equations for the average Green’s function over a range of
temperatures. We demonstrate a crossover from 7! behavior at low temperatures, indicative
of Fermi liquid behavior, to a more rapid 772 falloff at higher temperatures which reflects
the average Green’s function approaching the conformal SYK form.

8.5.3 THERMOPOWER STATISTICS

The mean thermopower in a model with both random hopping and SYK interactions displays
a crossover from the linear temperature scaling characteristic of a Fermi liquid for T" < E.op,

to the constant SYK value for T" > E..,. The coefficient of the mean thermopower in the
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Fermi liquid regime receives a renormalization due to the presence of SYK interactions, from
O ~ (et)~!'T in the free fermion model to © ~ (eEqo) 'T. This is not true for the mean
conductance, whose value for T — 0 is determined by the zero-frequency spectral density and
is fixed by Luttinger’s theorem, Eq. 8.48.

We now discuss the crossover behavior of the thermopower variance. For T' <« FE.p, the
thermopower variance follows from the free fermion analysis in Section 8.3 and diverges as
7! for low temperatures, albeit with a renormalized coefficient. For T > F.},, we find that
the Pearson correlation coefficient r between L£11 and L2 is 1 to leading order in T. We apply
Eq. 8.45, which gives the thermopower variance in terms of r and the statistics of £1; and

L12, where now we have

Var L <F>2 y 20282 __ T0.72
ar L11 = | ¢ —5 11 = &« =
h N2T2 htVT
> 007 -— r3oT’’¢ (8.53)
Var £12 = <h> X 7Nt2 y ,Clg == ﬁT .

All of the terms in Eq. 8.45 decay as T_l, which implies that in the limit » = 1,

Var@_i
e N

—1\2
(1.9715\—0.09\5\ ) . (8.54)

S

The coefficient is rather striking, as it predicts a suppression of this leading-order variance
at a critical value of the particle-hole asymmetry |£.| ~ 0.24. Recall that this leading-order

suppression happens generically for a pure SYK model - this is a consequence of expanding

V&I‘,C,l 1
—_— =
11

around the limit of perfect correlation between L£1; and L1, along with the identity

VarL12
—==.
L2

aforementioned fine-tuned value &.. This value of £ corresponds to a rather large particle-

The latter identity is not true generically in this model, but only occurs at the

hole asymmetry however, Q. ~ % 4 0.41, and is hence not easily accessible.
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8.6 CONCLUSION

We have analyzed the fluctuations of thermoelectric transport properties in strongly-correlated
quantum dots. Despite the apparent simplicity of our microscopic model due to its exact
large-N solution, this saddle point only describes the mean value of transport quantities;
higher-order statistical moments are controlled by replica off-diagonal fluctuations around
this saddle point, and as such require a more unconventional analysis (we note that this is
distinct from quantities such as the shot noise, which can be thought of as the second moment
of the current and have saddle point contributions as discussed in [158]). We find distinct
system size scalings for these fluctuations in a free fermion model (N~!) and an SYK model
(N73). The SYK prediction is qualitatively changed by the inclusion of a small random
hopping, which we find is able to drive conductance fluctuations at the same order as the
free fermion prediction. However, we still find distinct temperature scalings, with a 72
suppression for temperatures above the coherence energy in contrast to the 7! scaling at
lower temperatures predicted by the free fermion result.

Our main analytic results for the conductance, o were summarized in Section 8.1. We
also computed the thermopower, @. The mean thermopower vanishes linearly with 7" in the
Fermi liquid regime (see Eq. 8.31), while the SYK regime has a T-independent thermopower
(see Eq. 8.43). Furthermore, the finite N Schwarzian corrections are quite small for the
mean thermopower in the SYK regime [261]. These features make the thermopower an ideal
probe for detecting the SYK regime in experiments. However, analytic computations of
the sample-to-sample fluctuations in the thermopower are not straightforward because the
expression for the thermopower involves the ratio of electron Green’s functions. We made
partial analytic progress assuming small Gaussian fluctuations about the mean of both the
numerator and the denominator, and also obtained numerical exact-diagonalization results for
small values of N. Our main results are as follows. For a free fermion model, the thermopower
variance scales as t(NT)fl, in good agreement with numerical results. For a pure SYK
model, we find surprisingly that the leading order N~3 contribution to the thermopower
variance vanishes in the conformal limit (7" < J) due to perfect correlation between the

numerator and denominator. Fluctuations in this regime are hence governed by a combination
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of high-temperature and O(N _4) corrections, although we are unable to verify this behavior
numerically due to anomalous (’)(N *2) fluctuations. For a model with both random hopping
and SYK interactions, our predictions once again are qualitatively modified. The scaling of
the variance in the low temperature Fermi liquid regime is suppressed from the free fermion
result ¢ (NT)™" by an additional factor of ¢/.J. In the SYK regime, the scaling is identical,
albeit arising from distinct mechanisms. A noteworthy feature in the SYK regime is that this
leading-order variance vanishes at a critical value of the particle-hole asymmetry &, in which
case the first non-zero contribution scales as N~1(T/Eqo) 2.

The presence of a non-zero charging energy, as well as Schwarzian effects, have also been
predicted to lead to distinct signatures in transport quantities for strongly interacting quantum
dots [9, 261, 358], both within the weak tunnelling approximation as well as considering
higher order processes. An important direction for future study is the analysis of transport
fluctuations in this regime. As shown in our work, the central quantity that determines
these fluctuations is the covariance of the equilibrium Green’s function, G(w)G(e), as well
as potentially higher order moments. As these quantities can be expressed in terms of the
average Green’s function, which is known to display Coulomb blockade (Schwarzian) effects at
temperatures on the order of E. (J/N), we expect that their effects on transport fluctuations
will set in at analogous temperature scales.

A more careful treatment of the effects of the coupling between the quantum dot and the
leads may reveal richer physics. In this work, we restrict our parameter regime to a “closed”
quantum dot, where the coupling to the leads is the smallest energy scale in the system and
transport quantities follow from the properties of the isolated quantum dot. A more robust
framework for treating the effects of the leads can be developed by treating both the single-
particle hopping in the leads and the coupling to the quantum dot as random variables, for
which an exact (in the large-N limit) set of Schwinger-Dyson equations can be obtained for the
non-equilibrium Green’s functions [67]. The mean value of the conductance has been studied
using this framework, although the effects of single-particle hopping within the quantum dot
were not considered. In addition to treating conductance fluctuations within this framework,
an analysis of the effects of inter-dot single-particle hopping, which was not considered in [67],

may lead to new predictions even in the average value of transport properties. Corrections
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due to leads in the SYK regime has also been considered in [158], and may also provide an
appropriate framework for studying conductance fluctuations.

The nature of conductance fluctuations for a pure SYK model is also deserving of further
analysis. The results we present are confined to the conformal regime. Deviations from this
prediction at higher temperatures can be captured by an analysis of the large-N numerical
solution to the Schwinger-Dyson equations, and low-temperature deviations may be under-
stood analytically through Schwarzian fluctuations. This analysis is also expected to give
greater agreement with numerical results for small system sizes, where clear agreement with

the conformal prediction is absent.
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Appendix to Chapter 2

A.1 PROJECTIVE SYMMETRY ANALYSIS

This appendix will present a detailed analysis of the projective symmetry group (PSG) of the
7Z2A 2213 spin liquid, and its neighboring phases. Here, we will employ the gauge used by Wen
[511]. Wen described the Z2Azz13 spin liquid by the Bogoliubov Hamiltonian in Eq. (2.4)

with the ansatz

Uiirz = XT —nT?
Uity = XT +n7Y
Uiitaty = —NT
Uiim15 = YT (A1)

In terms of the spinons f;., this can be written as

H=- Z [2x(cos(kz) + cos(ky)) — i2n(cos(ky) — cos(ky)) + 4y sin(kz) sin(ky)] f—k) fre.r+H.c.

k
(A.2)

227



Appendix A. Appendix to Chapter 2

So in this gauge, the Z2A 2213 spin liquid has both d,2_,2 +is and d,; pairing and no hopping,

and the fermion dispersion relation is
2 = [2x(cos(k,) + cos(ky)) + 4y sin(ky) sin(k,)]* + [2n(cos(kz) — cos(ky))]? (A.3)

In the ansatz in Eq. (A.1), the 3 spin liquids are
o The m-flux phase with SU(2) gauge symmetry corresponds to x =7 # 0, y1 = 0.
o The ‘staggered flux’ U(1) spin liquid is obtained for x # 0, v = 0, n # 0 with x # 7.

o The Z2A 2213 spin liquid is obtained when the d, pairing vy; breaks the U(1) down to
Zs.

For our purposes, and in general, a complex Higgs field is needed to break U(1) down to Zs.
We have characterized the d,, pairing above by a real parameter 71, and we need to generalize
this to a complex parameter. From the analysis in Section 2.2, we deduce that this is obtained
by taking a complex d,, order parameter which has opposite phases on the two sublattices

i.e.

0 —(7 =i
Wi i+3+y — ( ) , iz + 1y even
— (11 +iv2) 0
U 0 ~Ont i) i, + 1, odd
iitEy = ]
— (11 —i72) 0
0 (11 — i72) .
Uji—z+y — , gyt 1y even
(71 + iv2) 0
0 (1 +iye) o
Uii-3+5 = . ig + 1y odd. (A4)
(71 —iv2) 0
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A.1.1 LarTIicE PSGS
We first recall the spin liquid classification scheme of Ref. [511]. If u;; is the mean field ansatz
for a spin liquid symmetric under the group action G, it transforms as

PG : uij = Wi(8)ug @) aiW () (A.5)

where W (7) is a gauge transform. In addition to the symmetries, these gauge transformations
characterize the spin liquid, yielding the projective symmetry group (PSG) [511].

Using the notation from Ref. [511], the spin liquid Z2A 2213 is defined by the PSG

th(z) - 7—01 WPLE(’L) = (_)iz+iyiTZ7 Wpry(l) = iTx:
Wiy (i) = 7°, Wy () = (—1)"=Fwir?, Wi(i) = ir? (A.6)

while the PSG of U1Cn01n (the staggered flux phase) is

Wio(4) = g3(02)it",  Wiya(8) = (=) 93(0:)i7",  Wpay(3) = g3(0pay)it®,

Wiy (i) = g3(0,)i™,  Wpy(i) = (=) g5(0y), Wi(d) = (=) "vgs(6r),  (AT)

where g3(0) = €™, From these PSGs we can extract the symmetry fractionalization through
the group relations given in the appendix of Ref. [480] (Eq. (B8)). These are provided in
Table A.1. Note that instead of Pyy : (ix,4y) — (iy,%z), we consider the 90° rotation R/, =

P,y P,. Similarly, P, is related to the other symmetries through R, /2PyR;/12.

A.1.2 IDENTIFICATION OF STAGGERED FLUX IN CONTINUUM MODEL

The staggered flux state (U1Cn01n) can be obtained by coupling a Higgs field to the bilinear

08 = tr ("X (v"idy + 1/i0) X)) (A.8)
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Group relations 72A 2213 U1Cn01n lattice U1Cn01n cont
1 T, ', T, T, 1 e~ 2i(0:—0y)7° —e2i(¢x—y)o*
2 PT,P,T; ! -1 e 2i0pyT* e2idpyo”
3 PT,P,T, ~1 e~ 20py7* 2idpyo’
4 P2 1 (2007 ¢~ 2idpyo”
5 P Ry /9Py Ry o 1 e 2i0py T _ 2idpyo*
6 Ry, 1 1 1
7 R, TRy oT, 1 i@y tOpy =048, )T i(2r—Ga—dy)o”
8 R TRy o, ! 1 @A) 0oA0 )T i(20r—de—0y)0”
9 T‘lR;}QT R/ -1 e~ 207" e~ 2i¢ro”
10 T 'P/'TP, 1 1 1
11 T*1T517T$ 1 2107 _e—2i¢to”
12 T‘lTy_lTTy 1 2077 e~ 2ipro*
13 T2 ~1 e2i0t0° e2idio”

Table A.1: Symmetry fractionalization. In keeping with the conventions of Ref. [480], the
gauge is chosen such that group relation 7 is fixed to equal —1 for the Zy spin liquid.

giving something like

L = tr(Xy"i0, X)) + O4tr(c" X MX). (A.9)

The U(1) spin liquid U1Cn01n is then obtained upon condensing one component of ®3. This
was determined by considering the symmetry fractionalization of the U(1) spin liquid obtained
by condensing the z-component of ®3: (®3) # 0. Based on the symmetry transformations

outlined in Table A.2, this condensate has a corresponding continuum PSG

Viz = 93(%)2'01, ‘/pz = 93(¢px)a Vi = 93(¢r)i0x,
Vty - g3(¢y)i0x’ pr - g3(¢py)u Vi = g3(¢t)a (A.IO)
where g3(¢) = €!%°" is an arbitrary gauge transformation. Importantly, in the U(1) spin

liquid, the phases ¢ can take any value. When these phases are rewritten in terms of the U(1)
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Operators T P, P, Ty T, R /o
0§ tr(c" X p*y* X) — — — — + %
@ tr (U“Y/ﬁ'yyX) — — - + - %

08 tr(oXp¥(vidy +1Yid)X) + o+ o+ — - -

Table A.2: Symmetry transformations of the three fermion bilinears which must be coupled
to SU(2) adjoint Higgs fields in order to realize the PSG of the Zy spin liquid Z2Azz13.

phases from Eq. (A.7), 05, according to

™
-, =

(¢za ¢ya ¢py> ?¢, ¢7‘) = (ez + il ) 9y 1

: 0y 0t Opry + Oy ) (A.11)

the symmetry fractionalizations given in columns 4 and 5 of Table A.1 are identical. It is
possible that two distinct spin liquids (as defined by having distinct PSGs) could neverthe-
less have identical symmetry fractionalization. This seems unlikely in this situation and is,
moreover, proven false by the explicit derivation of the continuum action from the lattice

model.

A.1.3 IDENTIFICATION OF Z2Azz13 IN CONTINUUM MODEL

The spin liquid Z2Azz13 is proximate to UlCnOln in that the PSG of Eq. (A.6) may be
obtained through gauge transformations and judicious choices of the angles 0 in Eq. (A.7).
It is, however, simpler to determine the U(1) transformations (i.e. the angles ¢,) that map
the symmetry fractionalization of U1Cn0Oln to the symmetry fractionalization of Z2Azz13.

That is, we find that the assignment

(¢Z7¢y7¢py:¢ta¢7“) = (A12)
T

T T T T
(94—1>0—Z—|—ny7r,(2npy+1)§a(2nt+1)§79—1—(2n,~+ny—|—1)2

) n, €7 (A.13)

transforms the 5th column of Table A.1 into a set of 41s that match the third column.

Inserting these ¢,s into the PSG defined in Eq. (A.10) and selecting n, = 0, u = y,py,t,r
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and 6 = /4, we obtain the Zs continuum PSG!

Viy = —io”, Vpy = —i0”, Vi =io”. (A.14)

We can now ask what form of operator needs to couple to a new Higgs field in order to realize
this PSG and hence the Zs spin liquid Z2Azz13. Firstly, it’s clear that the o® or o¥ compo-
nents of the Higgs field must condense—condensing in the o? channel, ~ @)Z)tr(azfl\? X),
would not break the U(1) symmetry. However, in considering condensates in x or y, we see
that the gauge transformations corresponding to the translations 7, and T}, are different and,
further, the rotation R/, exchanges 0® and oY, meaning that both must be present in a
symmetric spin liquid.

Based on the symmetry relations documented in Ref. [480], we find that the operators O; 2,
Of = tr(c" X p* 7" X), 03 = tr(c" X p"¥X), (A.15)

induce the PSG of Eq. (A.14) provided they couple to Higgs fields that condense in perpen-
dicular directions. The symmetry transformation properties of Of , are given in Table A.2.

That is, given a Lagrangian:

L= tr(X"i0,X) + ®ftr(c" X p* 7" X) + 5tr(c* X p*+Y X) + ®4tr (o X p (710, + 1¥i0,) X)),
(A.16)

the PSG in Eq. (A.14) is obtained when (®1) = («,0,0), ($2) = (0, @, 0), and (®3) = (0,0, 8),

for o, B € R. This agrees with conclusions reached in Section 2.3.4.

A.2 RENORMALIZATION GROUP ANALYSIS OF THE SU(2) GAUGE THEORY

In this appendix, we describe the origin of the log® terms in the critical SU(2) gauge theory
in a renormalization group (RG) framework. Integrating the RG equations will lead to an

exponentiated prediction for the correlators.

The symmetry P, is related to the other symmetries through R, /2PyR;/12.
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We start with the expression in Eq. (2.53), keep the full Higgs propagator as in Eq. (2.49),

and perform a standard momentum shell RG in the window A — dA < (p + p2 + pi)l/ 2<A

i) = Jifi /AAdA (;1733)93 (p= +(if:):f;)% + 10y pg + P L]:|4Klp\p% ' (A7
Expanding to linear order in k., using spherical co-ordinates with
(Po, Py, Pz) = A(sin @ cos ¢, sin O sin ¢, cos 9) , (A.18)
and setting u = cos 6, we obtain
57" S (k) = ]\%ﬁx 01 dp(1 = 2p%) — P IRAE (A.19)

Under normal circumstances, the p integral would be a finite numerical constant, and the
co-efficient of dA/A would the usual RG log which would then contribute (in this case) to the
exponent 7,,. However, that is not the case here, because of the logarithmic divergence of the

u integral near p = 1. Evaluating the p integral , we obtain

3k, dA 1
S Ealhe) =~ [m (KA) —44 O(KA)] . (A.20)

In a similar manner, we obtain for the frequency dependence of the self energy

12 A dp (po + ko) Ip|
67981 (ko) = ——— / : A.21
7 E(ko) Ny Ja—an (2m)3 (po + ko)? + p2 + p2 pg + p2 + 4K |p|p? (4.21)

In spherical co-ordinates this simplifies to
6ko dA [! 1
81 (ky) = — — [ dp(l - (1 = p?
3ko dA 1

= ——— |Inl— ) -2+ O(KA)| . A.22
Nym? A [H<KA) +ol )} ( )

The expression for 07¥% (k) is the same as 0731 (ko), after mapping ko = k.
We can also examine the vertex correction for the SO(5) order parameter in a similar

manner. From Eq. (2.68) at zero external momentum, we note that the vertex correction
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needs the integral

W L /A ¢ 1 4p)
Ny Ja—an (27)3 p2 + p2 + p3 pE + p2 + 4K |p|p2
1 dA ! 4
 2Ngm2 A 'ul—uz—}—élKA;ﬂ
1 dA 1
= = (= KA)| . A2
wrs [ (acx) + O] 429

We now proceed as usual to obtain the RG equations from the momentum shell results

under the rescaling

— :Ee_e

y = ye .

¢
7 = Texp <—/ délz(ﬁ’)) (A.24)
0
Importantly, we note the flow of the irrelevant coupling K under this transformation

dK

K. A2
7, (A.25)

For the fermion field we define

¥ = exp ( /O a1t z“/); w(f’)> (A.26)

The field 1 is not gauge-invariant, and neither is its anomalous dimension 7,. However,
the leading log? term we shall find shortly is gauge invariant. In the presence of the log?
term, we will also see that the usual logarithm terms have a non-universal co-efficient. So we
ignore the gauge field contributions here (the gauge field induced renormalizations have been
computed in Refs. [381, 384]), because they only contribute logarithm terms which become

part of overall terms which are non-universal.
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Matching Eqgs. (A.20,A.22) to Egs. (A.24,A.26) we obtain

() = Nfﬂa [m (K(lé)A> _3}
A0 = 1+

N (A.27)

Assuming a bare value K(0) = Ky, integrating Eq. (A.25) to obtain K (¢) = Kye™¢, and then

integrating Eq. (A.27) we obtain

0 6 EQ
/0 n(dl' = N |2 — (In(KoA) +3) ¢ (A.28)

We can now obtain the momentum dependence of physical observables by evaluating them at
a scale £ = ¢* = In(A/|p|). Note that the co-efficient of £* involves the bare value of Ky, and
hence the co-efficient of the logarithm term is non-universal, as claimed earlier. The leading
term is log?, and its co-efficient is universal and agrees with that in Eq. (2.59); similarly,
Eq. (A.23) agrees with Eq. (2.69). Inserting the integral Eq. (A.28) into Eq. (A.26), we

obtain results of the form in Eq. (2.72).

A.3 ISOLATION OF LOGARITHM-SQUARED DIVERGENCES IN ONE-LOOP CORREC-

TIONS

We state in the main text that logarithm-squared divergences in the critical SU(2) gauge
theory arise in the one-loop diagrams in a certain parameter regime, given by Eq. (2.55).
This is shown in the main text for the simplest one-loop calculation, which is the ®; (P2)
contribution to the fermion self-energy with external momenta k;, (k,). Here, we provide more
general calculations for other cases.

We first analyze the ®; contribution to the fermion self-energy with external momenta kg.

This is equivalent to the k, external momenta, as well as the ® contribution with external
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momenta kg, k.

1S (ko) ~_12/ d’p Po + ko [P

Ny J (2m)3 (po + ko)? + p3 + 9§ pg + p2 + 4K |p, |
__12/dm [p2| (3 — 4K |p.|” — k3)
Ny ) 82

5 ST b B a4 8K o023 — k) — (02 + D)2
—p2 + 4K |p, > — k2
tan~! Pz £ 4K pd| K (A.29)
VK2l + 8K [pa (2 — k) — (52 + K3)?
3

— —p3 + 4K |p.|” + kg

VAR pa° 4 8K pa[*(p2 — K3) — (52 + k2)?
2 [l (22,
Ny ) 8m2 2kg 4Klpxl3

We see that the dominant term is proportional to kg logQ(K ko), arising in the same limit
as in Eq. 2.55. This log? dependence comes from the inverse tangents, since 2tan~!(x) =
ilog (%) Assuming K |p,|* < p2, the expression in the denominator of the inverse tangent
argument is &~ ip2, so our integrand ~ i tan~! (i(1 + 4K |p,|)). If we further assume K|p,| < 1,
we get an integrand that scales like ko/p, In(Kp,), and hence the full expression scales as
ko log?(Kko).

These log? contributions are verified by numerically evaluating Eq. 2.53 and Eq. A.29 and
analyzing the behavior at small k, as shown in Fig. A.1.

For the Higgs vertex correction to the SO(5) order parameter, we can also isolate a log?
divergence. Calculating the ®; correction to the vertex, we regulate the integral by including

an external momenta 2k, evenly distributed between the two outgoing fermions. The vertex
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Figure A.1: Denoting the integrands of the two types of self-energy contributions in Eq. (2.53)
and Eq. (A.29) with K = 1 as fa(ky) and fp(ko), we plot a numerical evaluation of
872 f;(k)/(kIn(k)) vs 1/(In(k)). The form of this expression is designed to isolate the log?
contribution at small momenta, and agreement with our analytic predictions should give a
straight line with a slope of 1. The approximation of the Higgs propagator as Eq. 2.52 al-
lows for greater numerical precision, as the dimensionality of the integral can be reduced
by performing portions of the integral analytically. These numerical evaluations give good
agreement with analytic predictions as well as calculations using the full form of the Higgs
propagator.
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correction is

200 ? / d3p Pz — ki +py + P 4|pa|
Ny (2m)3 [(pr + k2 ) + 02+ p5) [(pe — ka)? + P2+ 03] P} + p2 + 4K |p, |
pro'Tio®y? [ rdrdp, p2 — k2 4+ r? 4|py|
Ny / 2m)?2 [(po + ka)? + 2] [(Pe — ka)? +72] 2 4+ 4K |p, |
W CTZUCL,UZK / dpy |pz|
Kabe (00 = 22)? = AK|p ] [(02 + ka)? = 4K |pa?]

X [ ((pi Rl 4 Pt kﬂ;f-’”” ) > In <m>
4KIp P\ (2 —p2) [ 4KIp.
+ (po + ko)’ [Ipx|3 n ((pm + kw)2> T ((px - kx)2>]

5. AK|p,? (k3 —p2) | [ _AKIpal”
- e k) l'px' : <<px - kw>2> " ((m +W>] ]

We can obtain a log? from the second logarithm in the brackets in the limit given by Eq. (2.55).

A.30)

A.4 ALTERNATE COMPUTATION OF z IN THE SU(2) GAUGE THEORY

In the main text we emphasize that although irrelevant terms in the Higgs propagator turn
out to strongly influence the renormalization of the critical theory, these effects cancel in the
dynamical critical exponent, and its value can be computed through more standard methods.
In this section, we compute z via dimensional regularization after explicitly setting the irrel-
evant Higgs terms to zero, and show that is gives the same answer for z as in the main text.

For the calculation of z, we are interested in the counterterms generated by

__i &p | vy pd-pl
N Nf/ (2m)? [p4F1(p) p4Fz(p)] (A3

This integrand is well-behaved for p? # 0, 0o, and one can see that the second term in brackets

082 L 0%
i Oko lk= 0o

vanishes, since the I's propagator is invariant under p, <> po.

The integrals over pg, py can be performed exactly in radial coordinates, which gives
3 / o 1 6 /  dp,
- dpy — = ——— — A.32
mNp Jooo Pl mNp oo pe (4.52)
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Continuing the p, integral to 1 — e dimensions and imposing a UV cutoff A, yields

6 A dpg 6 i 6 (1 L
o € —_ _ CEATE = — — 1 — A.
7T2Nf'u /0 Py 7T2Nf6'u 2Ny (e + n(A) +0(e) (A.33)

Which gives the same answer for z as when the irrelevant Higgs terms were used to regulate

the divergences in the self-energy.

A.5 HIGGS FIELD RENORMALIZATION IN THE SU(2) GAUGE THEORY

For completeness, we compute the log? corrections in the critical SU(2) gauge theory to the
Yukawa couplings at one-loop level, since these determine the renormalization of the Higgs
fields. The calculations are nearly identical to those of the SO(5) order parameter.

The correction to the ®; Yukawa coupling is given by the integral

(W) (wo")(wa®) [ dPp , p-W P 1

Ny / @) —k)2 = k)2 Ti(p) + Kp2
(u" o) (W) (" e®) [ &Pp , p-W L Pp-K 1

Ny /(QW)?’V (0~ k)2 (p—k2)?! Ta(p) + Kp2

(A.34)
+

Evaluating the first term in the limit in Eq. 2.55, we set the external momenta to zero and

use it as an IR cutoff k, which gives to log? order

(1o®)(p7o) (uo®)
27r2Nf

In?(Kk). (A.35)

This coefficient is identical to the SO(5) correction, as the two integrals are the same to
leading order in k. The contribution is the same for the second term in Eq. (A.34), giving the

final Yukawa correction

po”

o 2
= n?(Kk). (A.36)

The correction to the ®5 Yukawa term is identical, as the two are related by a spatial rotation.
We now renormalize the ®12 fields so that the Yukawa coupling remains invariant, as

in Ref. [199]. Hence, the Higgs fields are renormalized at log? order, ®; = VZy®; g, with
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corrections from Zy, and (A.36)

Ze =1+

In?(Kp) + In?(Kp) =1+ In?(K p) (A.37)

7T2Nf 7T2Nf 7T2Nf

A.6 EVALUATION OF TWO-LOOP SO(5) ORDER PARAMETER CORRECTIONS

In this appendix, we evaluate the O (Nf_1> two-loop correction to the SO(5) order parameter,
shown in the main text and displayed here in Fig. A.2 with internal momenta labeled. The
diagram shown is one of four possible contributions - additional diagrams can be generated
by either exchanging ®! <+ ®? or crossing the propagators of the Higgs bosons, but all give
the same correction for zero external momenta. The main conclusion of this appendix is that
this contribution is well-behaved upon setting the dangerously irrelevant operators to zero
and only contributes standard logarithm divergences, which we argue in the main text and
in Appendix A.2 give non-universal corrections to the order parameter scaling. Intuitively,
this may be thought of as related to the fact that these two-loop diagrams require both types
of Higgs ®1 2, as they vanish trivially when both Higgs propagators are of the same type.
As the log? divergences are connected to the rotational symmetry breaking in the O(Ny)
effective action for the Higgs propagators, it is natural - although still a non-trivial fact - that
these two-loop diagrams which respect rotational symmetry only contribute single logarithm
divergences.

This two-loop correction vanishes for the VBS order parameter, so we focus on the Néel
order parameter, where the source vertex contributes a factor of uYo®. We first evaluate the
fermion loop integral,

Pp p . p+d P
e’ ra? p?

e yor [ 0 Pulp+@)upo
= —4Nydp Tr [yF vy 7Yy ]/ 2n)? ;g(er;)Q (A.38)

®p pu(p+ @Q)vpo
= —8iN . (SHEEYPT 1 §VYETH | §OY VI _ 5V05u0 / [ )
00c (9% ‘ ‘ ) (2m)3 pi(p + q)2

(=1)N;Tr oo it i /
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- < "

Figure A.2: The (’)(Nf_l) two-loop correction to the SO(5) order parameter. We set all
external momenta to zero. Shown is one of four possible diagrams - the other three can be
obtained by either exchanging ®; <+ ®o, crossing the lines of the Higgs propagators, or both.
All give the same contribution at zero external momenta.

The integral over p yields

Ep pulp+@ups 1 1 49090
/ @2m)® pip+q)?  128]q 30 gy = 07"y — 0" g0 + P (A.39)

and contracting with the tensors in Eq. (A.38) gives the final contribution of the fermion loop

Z‘Nf qo
s A.40
2 14l (A.40)

We combine this with the remaining loop integral, setting the coefficient K of the irrelevant

operators to zero, to give

i ®q q0 . (=) 164>
— /LZ[ﬂO'bO'C/ 7,}/16 ’7y
2Ny @m)3lal " @ (ag+a2)(ap +a2) (A1)
_ 16pYo" / d3q ﬁ 1 '
Ny ) (@m)*lal (g5 +a2)(ag +a3)
Focusing on the integrand, we can compute this by converting to radial coordinates,
/ dzdfrdr 22 1
(2m)3 V2272 (22 + 12 cos? 0) (22 + r2sin? 0)
1 |z|r
= — [ dzd A.42
2r2 | 22222 4 12) (4-42)

In2 1
=— [ dz—.
4772/ “Tal
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Hence, this two-loop contribution only contributes a standard logarithm divergence, and is
subleading in comparison to the one-loop Higgs corrections.

We also analyze the two-loop corrections to the 1) bilinear, whose symmetry properties
correspond to the scalar spin chirality. This is motivated by the fact that log? terms in the
O(1/Ny) one-loop corrections exactly cancel the log? self-energy terms. Hence, if two-loop
corrections only contributed standard logarithm divergences, then the scalar spin chirality
would have a power law decay at O(1/Ny). In fact, the two-loop corrections involving two
Higgs propagators vanish exactly. If the Higgs propagators are different, as was the case
for the Néel corrections, then the trace over p in the fermion loop vanishes. If the Higgs

propagators are the same, then the trace over ~ vanishes, since

Tr[Y" v v Ipu(p + @)vps = Tr[Y* YY" 4v Ipu(p + @)vps = 0 (A.43)

A.7 DERIVATION OF ONE-LOOP RENORMALIZATION GROUP EQUATIONS

In this appendix, we give a derivation of the renormalization group equations used in the
main text. The one-loop contributions to the fermion self-energy (k) are UV divergent, and
hence require a UV cutoff A. The behavior of the self-energy upon integrating out high-energy
modes is dictated by the logarithmic derivative with respect to the cutoff, Ad%Z(k). The fact
that our propagators are homogeneous functions of the three-momenta allow us to calculate
this logarithmic derivative explicitly without reference to a specific cutoff. We assume that

our regularized one-loop expression for the self-energy takes the form

(k) = / (;1;];31?(]0 +R)GR)K <7A’22> K <(]“X2”)2> (A.44)

where F' and G are homogeneous functions of the three-momenta with degree —1 - we take
F' to be the fermion propagator, and G to be the boson propagator (either Higgs or gauge)
along with the various vertex coefficients. The function K(y) serves as a UV cutoff with the

property that K(0) = 1 and K(y) falls off rapidly for large vy, i.e., K(y) = e~ Y. Since we are
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interested in the behavior at small momenta, we expand around k = 0,

S(k) ~ ky / (;1:;’;3 Pg}ff)a(p)/@ (i) + F()G(p)K <iz> %/c’ <i22>}  (A45)

We then take the logarithmic derivative,

s [ S50 gt (B ()

oo e ()< (8) =)

We now convert to spherical coordinates, p’ = yA(cos 6, sin 6 sin ¢, sin 0 cos ¢), and use the

(A.46)

homogeneity property of F' and G to pull out factors of (yA)~!.

oy ke [T OFGE) o e (R
Aggs = g [Msmoas [Tao | {1200 —apr ) 6o [T uanketc?)

SBFGCE) [ (6K () + K ()] (A.47)

The integral over y can be done explicitly via integration by parts, which causes the depen-
dence on the cutoff function I to drop out. This leads to the expression cited in the main

text

d S T OF (D) ., -
A—Y(k) = = . A48
A (k) 87r3/0 dgzb/o sin 0§ d6 R G(p) ( )

where p = (cos 6, sin 6 sin ¢, sin 6 cos ¢).
Explicitly, we take, for the Higgs contribution to the self-energy, defining Q(p) as the

fermion propagator,

F(p) = (1" +in™") o~ Q(p) (u*" —ip"y¥) o
+ (" —ipy) o Qp) (" +ip"yY) o (A.49)
1

G(p) = @
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For the gauge contribution,

Fu(p) = [+ ®p?0” (0u27Y + 0uy )] Q(p) [V + ®p¥0” (00,27Y + uyv™)] ,

G (p) = (T (p)"",

(A.50)

where the fermion self-energy now contains a summation over u,v. A similar approach can

be used to regulate the one-loop vertex corrections, which take the form

d3p 3 p2
= = H; £ A5l
[ st (5 (A1)
where H;(p) is a homogeneous function of degree —3. Upon taking the logarithmic derivative,
d d3p p2 p2
A—Z,=-3 | ——H,(ppK*|= |K (% ). A.52
v == [ o ()¢ () )

Converting to spherical coordinates and integrating by parts, we get

d _ 1 2m ™ ) R
Aﬁ_i— 87r3/0 dd)/o sin@dé H;(p) . (A.53)

Explicitly, the Higgs correction is

1

Hi(p) = Q)n'Q(p) (™" +ip™") o~ 1 (7" =iy o
A lp (A.54)
+ Q)W Q(p) (" —ip*Y) a*m (1*Y" +ip"yY) o™,

and the gauge correction,

Hi(p) = Qp)1'Q(p) h* + @pYo” (827 + Spyy™)]

X (H(p)il)uu [’YV + ®p¥o” (5u,x7y + 6u,y7x)] .

(A.55)

A.8 ANISOTROPIC CORRELATION FUNCTIONS IN REAL SPACE
As shown in the main text, the momentum-space Néel correlator is given by

1

Greel (k) = S1—32)

(o 4 [F-1]) (A.56)
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where we define |ky| = /k2 + (kz £ ®k,)2 + (k, & ®k;)2. The Fourier transform of this
function can be computed with the knowledge of the (suitably regularized) Fourier transform
in three dimensions, |k| — T%. We take the Fourier transform

&S
/ el (A.57)

and perform a change of variables to shift the anisotropy to the spatial coordinates

1 Bk,
/ elk'T’i |]{7|

1-®2 ) (2n)3
to =1
(A.58)
=——(z+d
T+ 1 _ @2 (:L‘ y)
1
Y+ = ﬁ(y + ¢x)
which yields the real space correlator given in the main text.
To compute the Fourier transform of the VBS correlator, given perturbatively by
k2k2 — k2K
Gyps(k) ~ k| — &2 | 2|k| + % +0(0Y), (A.59)
we define the function
Flas, ki) = \Jaok3 + agk? + ay k3 (A.60)

The Fourier transform of this function can be calculated by a similar change of variables,

3 2 2 2\ —2
/dkﬂ%m~1t+m+y . (A.61)
(2m)3 V00z0y \ Gy Gz Gy

The various terms in the (’)(<I>2) corrections to the VBS correlator can be obtained by taking
derivatives of f(a;, k;) with respect to a; and setting a; = 1. This allows us to calculate the

real space VBS correlator and gives the result in the main text.
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A.9 PERTURBATIVE CORRECTIONS TO MONOPOLE SCALING DIMENSION

In this appendix, we present a partial calculation of the O(/Ny) corrections to the scaling
dimensions of a monopole at our deconfined critical point. As previously established [51], the
O(Ny) scaling dimension for isotropic QED3 is A = 1.06 Ny. We present the scaling dimen-
sion using our convention, where QED3 with N = 4 Dirac fermions corresponds to Ny = 1.
Although gauge and Higgs fluctuations give corrections to this value, these corrections are
subleading in Ny, and the only O(Ny) correction comes from taking the saddle-point solutions
of the bosonic fields and calculating the shift in free energy arising from the anisotropic Dirac
dispersion relation. We proceed perturbatively in the Dirac anisotropy parameter ® - this
is necessary as the anisotropy will in principle modify the saddle-point monopole configura-
tion of the gauge field. As we will see, to leading order in ®, the gauge field configuration
corresponding to the isotropic Dirac monopole will be sufficient.

We start with the action for QED5 with the allowed velocity anisotropy term, omitting the

Higgs fields as they will not play any role in the calculation
S =i / Br [pDY + PYpY (Y Dy — 1Y Dy)] . (A.62)

We leave implicit the summation over the 4N fermions. Note that this action is different
than in the main text. This is because we follow the convention used in [187], where the gauge
field is coupled in the usual way, D, = 0, — iA,, and the microscopic SU(2) spin rotation
symmetry is implemented explicitly by the o* matrices. We refrain from using this convention
in the main calculation, as the coupling to the Higgs field is not easily expressible in this form
and overall makes the calculation more complicated.

In the absence of a velocity anisotropy, the saddle-point configurations for the gauge field

corresponding to n units of magnetic flux at the origin are given by
— n
Ap(r) = 5(1 —cosf)de (A.63)

The non-zero anisotropy will affect these saddle-point solutions. The leading order corrections

to these solutions are (’)(@2), as the O(Ny) effective action for the gauge field upon integrating
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out the fermions has only corrections of O(CI)Q) and higher. Hence, we write the saddle-point
gauge field solution in the presence of a velocity anisotropy as A,(r) = A,(r) + 6A,, with
5A, ~ O(32).

In order to calculate the scaling dimension of this monopole, we set = ¢” and perform a
Weyl rescaling

—2
Guv — € Tg/w

Vo= e ey

(A.64)

This rescaling maps the scaling dimension of the monopole operator to the free energy F =
—log Z of the system [314].

To leading order in Ny, we ignore gauge and Higgs fluctuations, and the action reduces
down to one of free fermions with a background gauge field. For the isotropic case, this action
can be put in a nearly-diagonal form with the aid of monopole harmonics [527] and their

spinor generalization [51]. By expanding 1 in terms of these harmonics,

4

0 0 L
i = [N X W@+ 3 Y W @Sm(0,0)| e

{=n/2 m=—{-1 {=n/2m=—1L
(A.65)

where T, ¢, , Sy em are eigenvalues of the orbital angular momentum operator L2 in the pres-
ence of a strength n monopole, with orbital angular momentum ¢ and total angular momentum
¢+ 1/2 for T), ¢, and ¢ — 1/2 for S, ¢p,. Explicit expressions for the spinor harmonics T}, ¢,
and Sy, s, may be found in [51]. The variables \Ifﬁfpm , \Ifgm are anti-commuting coefficients.

Expanded in this form, the isotropic action with ® = 0 can be written as

= {—1)m % m " .
So=[50 2 X (0w e ) Nuwr Mg |7 (A.66)
l=n/2 m=—1L \IJS (w)
with
¢ (1 _ ni) n i
M, = w)oeve A
iy (1)
(A.67)
Nn,Z — 20 . 402
Si-E 3
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The free energy is then given by

d o0
log Zo = 4N; / faad > logdet(Ny ¢(w + My 0)) - (A.68)
27I_ kl y
l=n/2
This expression can be evaluated via zeta function regularization, yielding the aforementioned
scaling dimension of A = 1.06Ny.
Corrections to the free energy as a consequence of a non-zero ® can be calculated pertur-

batively. Writing the action as S = Sp + .5, with S ~ O(®), we have

log Z = log [ / Dd)Dwe_S] = log [Zo + / DiyyDipe 0 <—5S + %552 + .. )]
(A.69)

1
= log Zy — (6S) + 5<552> +...,

where the expectation values are evaluated with the isotropic action. There are two com-
ponents of S that are O(®?) or lower, as can be seen from Eq. (A.62). The first comes
from the velocity anisotropy term ®yuY(v*D, — YD, )1, where the bar indicates that the
covariant derivative is defined with the isotropic monopole gauge configuration. The second
component arises from (’)(CIJQ) corrections to the isotropic gauge configuration, which appear
in the term 7. Only the first of these corrections gives (’)(<I’2) contributions to the free
energy; the corrections to the saddle-point gauge configuration d A, couple to the conserved
current J* = y*p + O(®), whose expectation value vanishes. Hence, the free energy to

(’)(@2) is given by

F =log Zy + 2> Tr/d3r &3 (P(r)(v*(Dy — Z) — Y (Dy —y))b(r) A70)

< Y(r') (" (Dy — T) = 7¥(Dy — §))0(r"))

The additional factors of Z, 7 arise from the Weyl rescaling.
The calculation in Eq. (A.70) amounts to calculating the two-point function of the fermion

bilinear ¥ (r)(7¥(Dz — Z) + v*(Dy — 4))%(r). To this end, we denote the matrix elements of
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the operator (v¥(D, — ) +~v*(Dy —¥)) in the spinor harmonic basis

R
Bt (@) = / ao | ™ | W@ B+ D, - 9]
Sn,fm(97 ¢)62w7— (A?l)

X <Tn,€m(07 </>)€_im Sn,fm(07 (rb)e_in)

These functions are exactly calculable in terms of Wigner 3-5 symbols, and are only non-zero

for [¢ — ¢'|,|m —m/| < 2. In order to calculate these functions, we need the matrix elements

(Yq,fm‘ z }}/ql’m’>
<}/q,€m‘ /y\ ‘Yq,é’m’>

<Y;1,€m ‘ Di:- ‘ Yooy >

(A.72)

(Yg,em| Dy |Yo,orm)

where Y, s, is the scalar monopole harmonic [527] in a background monopole of strength
2q = n and Df is the angular component of the covariant derivative D;; the radial component

is simply equal to ga%. For this, we need the integral formula for three monopole harmonics

- o (204 1)(200 +1)(207 + 1
/dn }/q,ém}/q’,l’m’Y:]”,Z”m” = (—1)€+£ +t \/( )( 47[_ )( )
E E/ g/l g z/ é,/ (A73)

q ¢ q m m' m
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The first two matrix elements can be easily computed with the identity

T=—\/— You1—Yo1,-1)

6

. 47
V=i (You1+ Yo,1,-1)

B (_1)g+g,+q+m\/(2£+ D20 +1)

2
¢ 17 2 14
o _
y 2 D20 +1
(Yq,e,m| ﬂ‘Yq,w,m’> = —i(—1)€+£ +q+m\/( 0+ )2( 0 +1)
2 2 14
X +

1

—1

(A.74)

To calculate the last two matrix elements, we must utilize the raising and lowering angular

momenta operators

2Ly =2(Ly +L_)=Dy -7

0
¢

(A.75)

and similarly for Dyl. This equation can be easily verified for the angular momenta opera-

tors without a monopole background, and we verify numerically that this formula correctly
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generalizes to non-zero g. This leads to the formula

er+1) (¢ 10
4

/ 26 1
(Yo.om| Di |Y;1,f’m/> = (—1)1"'(""@ +Q+m\/( +

—q 0 ¢
A N(p! ] ¢ 1 VA 7 N7 T ¢ 1 /!
X |V =m0 +m' +1) ST = 1)
-m 0 m' +1 0 w1
_/ém/ <Y;1,€,m‘ :,/J\‘}/q,f’,m’>
!
] eregrm [REEDEEET) (6L
(Yo.em| Dy |Yq,€’m/> = —j(—1)t Tt \/ !
—q 0 ¢
¢ 10 P
X \/(E/_m/)(gl—i_m/—i_l) +\/(€/+m/)(€/_m/+1)
o -m 0 m' -1
_Z.m/ <Y;1,€m‘ /y\ ‘Yq7g/m/>
(A.76)

From these matrix elements, the components of B;, g can be assembled by expressing the
spinor monopole harmonics in terms of the scalar harmonics.

Upon obtaining an expression for B, we have

dw .
F=logZy— 40> Y / S T | Bt ()N + M )
bttt (A.77)
X BIL,Z’m’Zm(w)Nn,Z' (w—iM, )

The minus sign outside the summation relative to Eq. A.70 arises from the fermion loop.
What remains is a suitable procedure for regularizing the divergent expression in Eq. A.77 -
as the functions B, ¢y are rather complicated summations of Wigner 3-j symbols, this is

a non-trivial task and we leave this as an open question for future study.
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B.1 DERIVATION OF EFFECTIVE MODEL

For completeness, we summarize the derivation of our effective model, first calculated in [408].

Our starting point is the spin-1/2 Heisenberg antiferromagnet on the triangular lattice,
H=Y JijSi-5j. (B.1)
ij

with J;; short-ranged antiferromagnetic interactions. In our derivation, we will take J;; = J
on nearest-neighbor sites, and 0 otherwise. We use a Schwinger boson representation, where
the (25 + 1) states of a spin-S representation of SU(2) can be represented in terms of bosonic

operators Sit, S;,

S = V(S + m;!(S —m)! (SZTT) o (SL) o 0 (B-2)
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where m = —S,...,S is the z component of the spin, and the vacuum |0) contains no

Schwinger bosons. Our physical Hilbert space is obtained by the restriction
sl s =289 =n,. (B.3)

The ns — oo limit is classical and results in non-collinear antiferromagnetic order. In order
to retain quantum fluctuations, we additionally generalize the SU(2) symmetry to USp(2M)
and take the limit ng, M — oo with k = ng/M fixed. The generalization to USp(2M) rather

than SU(2M) is chosen to ensure the existence of a spin singlet state, given by
jaﬁsgasja 0) , (B.4)

with \70‘5 a 2M x 2M matrix,

and the USp(2M) group defined by the set of unitary matrices U that satisfy U7 JU = J.

Writing our Hamiltonian in Eq. B.1 in terms of Schwinger bosons,

H=-Y" 2‘]—]\2 (775L,s15) (Frosiss) (B.6)

1>]

moving to a path integral representation, and performing a Hubbard-Stratonovich transfor-
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mation to decouple the four-boson term, we obtain

:/DQDSD)\eXp (- /f&h) ,
L= Z { m( +1A> —i)\ms] B.7)

ng’sz JZ] i
+Z -5

jo"gsmsjg +h.c

This Lagrangian has U(1) gauge invariance, under which

S}La - Sza eXp(ipi (T)) )

Qij — Qijexp (ipi(1) —ip;(7)) (B.8)

op;
or

N — N+

The saddle-point solutions Q, A of Eq. B.7 have been obtained previously [408]. The saddle-

point values ) satisfy

Qi = (jaﬁ3?85> ; (B.9)

which imply anti-symmetry under exchange of ¢ and j. These saddle-point solutions can be

chosen to satisty Q; ;1¢, = Q, i\; = \, where the unit vectors €p

& = (1/2,@/2)
5 = (1/2’_\/3/2) (B.10)

é\3 = (*170)

point between nearest neighbor sites. The anti-symmetry under exchange of ¢ and j implies
that the mean-field solution for Q will break reflection symmetry; however, reflection sym-
metry can be restored by a gauge transformation. Of note are non-translationally-invariant
saddle-point solutions for Q [198], whose solutions Q” relative to the translationally-invariant

saddle-point correspond to a localized defect, along with a “branch cut” extended outwards
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from the core, where sgn(Q};) = —sgn(Q;;). These saddle-point solutions are identified with
gapped vison excitations in the corresponding Z, spin liquid, whose exchange statistics with
the Schwinger bosons are mutual semions.

Taking these saddle-point solutions, the hopping term J? Siasj3 can be diagonalized, lead-

ing to a continuum Lagrangian

0z oy
* o * I
Ya'pr * 2o or

- — - 3JQ
+ (/\ + 3\/§']Q/2> ‘ya’2 + /\‘xa‘Q + 9 <‘azza|2 + layzaP) +...

% axa — — 2
L=ap52+ + (A—3\/§JQ/2) 20

(B.11)

where we have written our bosonic spinons s;, in terms of three variables z, , Y« , 2«, related
by a unitary transformation to the three bosonic spinons on the three site of each unit cell.
The bosonic spinon z, has the lowest mass, and hence the transition between the theory with
antiferromagnetic long-range order (<§;> # 0) and the quantum-disordered phase is driven by
the condensation of z,. The other spinon fields can be integrated out, yielding the effective

Lagrangian
1

£= A+3V3JQ/2
+ (X—3\/§J@/2> ENCES—.

3JQV3

|0, 20| + 3

(Pl + 0 F) (B.12)

Provided the visons remain gapped, this theory describes a deconfined critical point sep-
arating a state with long-range antiferromagnetic order to an odd Zs spin liquid. One may
additionally consider a possible vison condensation, where the vison Berry phase will lead to

valence bond solid ordering. These two transitions can be captured in the partition function

25

2= ) H/dzﬂ‘a‘s <Z\Zg2‘a\ - 1) [Isiser|  exp(=Hlzass)
« j

sjj+a=%1 Jj

(B.13)

J
Hlzqa, 8] = 5 Z $ji+i (ZfaZjtia + €€) — KZH i it
(Gs1) AO AD

where we have introduced the Zs gauge field s;; defined on the links of our lattice. The model
is defined on a three-dimensional stacked triangular lattice, where we have discretized our
temporal direction. For large J, fluctuations of z are suppressed and we recover Néel order.

For small K, vison excitations proliferate and we obtain either a trivial phase (integer S)
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or valence bond solid order (half-integer S). Importantly, we must include a Berry phase
term Hj Sjj+r,» which is non-trivial for half-integer spin. In particular, this Berry phase is
an obstacle for using classical Monte Carlo methods to evaluate the partition function for
half-integer spin, as the sign of each term in the partition function may be either positive or
negative and hence prevents evaulation via probabilistic sampling. One of the results of this

work is to derive a sign-free representation of Eq. 3.2 amenable to Monte Carlo studies.

B.2 DETAILS OF NUMERICAL SIMULATIONS

Here, we provide additional information regarding Monte Carlo simulations of our effective
model. A single Monte Carlo simulation consists of 10 sweeps, where a single sweep consists
of L3 of each of the local and cluster updates described in the main text. The first 50% of
sweeps are used to thermalize the system. All measurements are averaged over 100 runs with
different random seeds. We use the Xoshiro256+ algorithm for generating random numbers.
In order to reduce the computational bottleneck arising from repeated evaluations of the
modified Bessel function I,(x) present in our partition function, we pre-compute a lookup
table of size 10 x 10* for integer values of 0 < p < 10 and a discretized grid of size 10* of
values between 0 and the maximum possible value of x, J/2. With this, the majority of the
computation time is spent computing geometric information, such as finding nearest neighbor
sites or the bonds surrounding a plaquette. A large amount of geometric data is relevant for
our simulations as we work with sites, bonds, dual sites, and dual bonds; as a result, pre-
computing all the required geometric data and storing it in memory leads to a large number

of cache misses and is ultimately slower than computing the information each time.

B.3 SURFACE WORM ALGORITHM

Details of the surface worm algorithm (SWA), first discussed in [106], are presented here.
The idea behind the SWA, as with worm algorithms more generally, is to generate large

moves via probabilistically moving through unphysical configurations such that the final phys-

ical configuration obeys detailed balance with respect to the original one. Traditional worm

algorithms are applied to systems where physical configurations correspond to some form of
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closed loops, and the unphysical configurations that the algorithm moves through are ones
with an open loop. For gauge-Higgs models, this simple application is not appropriate - the
closed loops correspond to bosonic worldlines, and the presence of a gauge field means that
worldlines of charged operators must form the boundary of a surface of gauge flux. Rather
than growing a single current, the SWA grows a “ligament” corresponding to two parallel

current loops bounded by flux. This process is illustrated in Fig B.1.

Figure B.1: We illustrate the growing of a “surface worm” using the SWA. At each step, the
worm can either attempt to grow in a random direction or attempt to close the loop. Each
move is accepted probabilistically according to the Metropolis algorithm. Note that this worm
can move in all directions, not just the two-dimensional plane illustrated.

There is a geometric subtlety in implementing the SWA here, which arises from the non-
cubic lattice structure. For a cubic lattice, all possible moves from a given bond are chosen
with equal probability. For a stacked triangular lattice, there is a difference depending on
whether the constraint-violating bond is a spatial and temporal bond - the former has 10 pos-
sible moves, whereas the latter has 18. In order to maintain detailed balance, the probability
of picking a temporal bond while on a spatial one must equal the probability of picking a spa-
tial bond while on a temporal one. To enforce this constraint, all 18 moves from a temporal
bond are chosen with equal probability, and the moves from a spatial bond are chosen in a
skewed manner such that the probability of moving to any of the four neighboring temporal
1

bonds is 4 x 8
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B.4 CLUSTER ALGORITHM FOR DUAL ISING MODEL

Here, we provide more details on the cluster updates we use for the dual Ising degrees of
freedom. This style of updates was described in [320]. The update we use is a variant
on the Wolff cluster update [524], a well-known cluster algorithm for efficiently generating
global moves in Ising models. However, this algorithm becomes inefficient in the presence
of frustration. As our dual Ising model only has frustration in the spatial bonds, we adapt
the algorithm such that cluster are only grown along the frustration-free temporal bonds
- a standard Wolff algorithm may still in principle be used and will lead to comparable
convergence times when measured in terms of Monte Carlo steps, but will be significantly
more computationally demanding than this more targeted cluster update.

We apply this algorithm to both single dual sites and pairs of dual sites - the latter is neces-
sary as movement between low-energy configurations is accomplished by flipping neighboring
pairs of spins. For a single site update, we pick a dual site j at random and calculate the energy
AF; incurred from the spatial bonds after flipping the Ising degree of freedom on that site.
This site is then added to our cluster. We grow the cluster in the temporal direction, where
growing a cluster in the +7 direction is accepted with probability p = min{0, 1 — e 2K30j054r }.
The energy from the spatial bonds of these spins are added to AFEs. Once the cluster has
finished growing, the entire cluster is flipped with probability min{0, e=*Fs}. This illustrates
the necessity for keeping the temporal coupling K relatively small, as a sufficiently large K
will lead to clusters spanning the entire temporal direction and our model effectively reduces
to that of a classical 2D Ising model.

For performing this update on a pair of neighboring dual sites j,k, we proceed in an
identical fashion, growing of a cluster in the +7 direction with probability p = min{0,1 —
e 2Ka ("j"jiTJr"k"kiT)}. The inclusion of these moves are important as AFE, will generally be

much smaller for these moves.
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C.1 PERTURBATIVE DERIVATION OF THE CONDITION FOR REALITY OF EIGENVAL-

UES

Here we provide a formal derivation of the statement of Sec. 4.2 of the main text that the
eigenvalues of any (almost) degenerate subspace of Hy in Eq. (4.2b) will remain real upon
adiabatically turning on the non-Hermitian perturbation €V, if all states in the (almost)
degenerate subspace have the same eigenvalue under the metric operator n. We will discuss
two different perturbative expansions and prove that the above holds true to all orders. We
will then discuss the approximate orthogonality of the associated eigenstates.

To this end, we will consider a pseudo-Hermitian Hamiltonian of the form of Eq. (4.2b),
H.=Hp+¢€eV, ecR, (C.1)

and a metric operator 7, such that [n, Hy] = 0 for the Hermitian unperturbed part, H, = Hg,

L= VT for the perturbation.

and nVn~
We are interested in the behavior of the eigenvalues of a subset of (orthonormal) eigenstates,

{|ti),i =1,...,n}, of Hy, which can be arbitrarily close or identical in energy but are well
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separated from all other eigenvalues. We refer to the space spanned by {|¢;),i =1,...,n} as
the almost degenerate subspace.
To analyze how their eigenvalues, Ej;(€), i = 1,2,...,n, evolve when turning on €V in

Eq. (C.1), we define the projectors P and @,

i=1

to the almost degenerate subspace and its complement. We use that the exact eigenstates,
|W;(€)), obeying
Hc |Wi(e)) = Ei(e) [Wi(e))

must also satisfy [62]

H(Ei(e))P|¥s(e)) = Ei(e) P |¥y(e)) (C.2)

with the effective Hamiltonian

H*Y(E) = PH.P 4+ PH.QG.(E)QH.P, (C.3)

Ge(E) = [E - QHQ™". (C.4)

As follows from Eq. (C.2), the eigenvalues E;(¢), i = 1,2,...,n, can be obtained by diagonal-
izing the effective Hamiltonian H, fff in the almost degenerate subspace. Of course, this is not
straightforward to do as the effective Hamiltonian itself depends on these eigenvalues; how-
ever, the effective-Hamiltonian formulation is a good starting point to develop a perturbative

expansion.

C.1.1 EXPANSION IN €

Since we view the non-Hermitian part €V as a perturbation to Hp in our discussion in the
main text, it is very natural to expand in e. Note that PHyQ = 0, so the second term in the

effective Hamiltonian (C.3) is O(€?),

H™(E) = PHyP 4 ePVP + &PVQG.(E)QV P. (C.5)
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Let us now assume that we can obtain FE;(e) via perturbative expansion in e. To keep the
notation compact, let us define the operator Ty which performs a Taylor expansion on a
function or operator up to and including order N, i.e., Tn[f(x)] := /{LO %%(0). As follows

from Eq. (C.5), T1[E;(e)], for any i = 1,2, ..., n, is obtained by diagonalization of
hg) = (Uil (Ho+€V) [¥5), 4,5 =1,2,...,n. (C.6)

Since, by construction, all [¢;) have the same eigenvalue under 7, we conclude from Eq. (4.3)
that hgjl-) is Hermitian and, thus, T1[E;(¢)] € R. Higher orders, Tn~1[E;(¢€)], are obtained by
iteratively diagonalizing

W) = (] (Ho + €V
ij <w’( 0TE€ (C?)

+ TN o[VQG(Tn—2[Ei()))QV]) [1h)) -
First, note that () commutes with n which implies that G.(E) and, thus, also VQG(E)QV
are pseudo-Hermitian if £ € R. Since this holds for a continuous set of values of e, this
property holds for each order in the Taylor expansion separately. As such, it also applies to
Tn_2[VQG(E)QV]in Eq. (C.7). Due to T1[E;(€)] € R, iterative diagonalization of Eq. (C.7)
will always yield real eigenvalues. Taken together we have shown that E;(e), i = 1,2,...,n,
stay real to any order in e.

If the eigenstates are exactly degenerate for € = 0, the leading non-zero contribution to the
energy splitting will determine whether the eigenvalues of H, stay real or become complex.
In most cases, the first order corrections, given by diagonalizing PH, P, break the degeneracy.
Since PHP is clearly Hermitian, our result is simple if the first order energy splitting is non-
zero. In fact, a mathematical proof to first order in perturbation theory has been provided
in Ref. [65]. However, topological degeneracies are often broken only at higher orders in
perturbation theory, so a more general result is required.

If, however, the degeneracy is already broken for ¢ = 0, our current perturbative approach
cannot be used to understand whether the eigenvalues stay real or not: by construction, we
assume that F;(e) is an analytic function of € and therefore will never be able to reproduce

the € dependence of real eigenvalues meeting and moving into the complex plane. For this
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reason, we next present an alternative approach.

C.1.2 EXPANSION IN ENERGY SEPARATION

The problem noted above that arises when the eigenstates of Hy are not exactly degenerate can
be reconciled by performing an expansion in the energy gap between the almost degenerate
subspace and the rest of spectrum. More formally, we generalize the effective Schrodinger

equation (C.2) by introduction of a dimensionless parameter A,
HE(Eie(\)P [Tie(N)) = Eie(N)P [Wie(3)) (C8)

where

HEY(E) = PH.P + A\ PH.QG(E)QH,P. (C.9)

We assume that we can expand E;()\) in a power series of A\, but treat its e-dependence
exactly, and show that it stays real to all orders in A. Since A multiplies G¢ in Eq. (C.9), this
expansion is controlled by the gap to the other states of the spectrum being large (compared
to €V). The argument proceeds similar to the one above: the zeroth order contribution,
To[Eie(N)] = Eic(0), is obtained from diagonalization of Eq. (C.6) and as such real. One can
compute Tn|[Eic(A)] from Tn_1[E;(N\)] by iterative diagonalization of

hEJN ).

(il (He + ATN 1 [HQG(Tn—1[Eic(\)])QHC]) |45) -

With the same arguments as above, this implies that Tn[E; ()] will stay real for any N.
Of course, the perturbative approach is expected to break down when the gap between the
almost degenerate subspace and another part of the spectrum with different eigenvalue under

7 closes since G, will develop a pole.

C.1.3 APPROXIMATE ORTHOGONALITY

Above, we have argued that the effective Hamiltonians in Egs. (C.3) and (C.9) will be Hermi-

tian if the eigenvalues of 1 are identical in the almost degenerate subspace. This does not only
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have consequences for the reality of the eigenvalues, but also for their mutual orthogonality.

To first order in € and zeroth order in A, i.e., to leading order in the limit of a large gap to the
excited states, the effective Hamiltonian is also independent of E. Therefore, the projections
P|U;(e)),i=1,2,...n, are obtained as eigenstates of the same Hermitian Hamiltonian and, as
such, orthogonal. Naturally, this does not mean that |¥;(e)) are orthogonal in the full Hilbert
space; however, the differences between the full and the projected states, |¥;(¢)) — P |V;(¢)) =
Q |¥;(e)), are also suppressed in the limit of large energetic separation to the rest of the
spectrum since [62]

Q[¥i(e)) = eG(Ei(€))QV P [¥;(e)) , (C.10)

as stated in the main text.

C.2 INTERPLAY BETWEEN X-CUBE FOLIATION AND METRIC OPERATORS

In the main paper, we noted that the ground states of the X-cube model all have the same
eigenvalue under our choice of metric operator 7 in Eq. (4.5), provided all lengths are even.
This is because 7 can be assembled by a collection of stabilizers. While 1 cannot be assembled
by stabilizers on a system with odd lengths, it is known that the X-cube model exhibits foliated
fracton order [450], which implies that an L X L X L X-cube model ground state can be enlarged
to a ground state of an L X L X L+ 1 model by the attachment of an L X L toric code ground
state and the application of local unitary operators. If L is even, then the original X-cube
ground states and the toric code ground states will all have the same eigenvalue under 7.
Because of this, one may suspect that the resulting L X L X L + 1 ground states may also
have the same eigenvalue under the appropriately enlarged 7. However, as we will show, the
process of attaching the two states and applying local unitary operators yieldsan L X L X L+1
state that is not an eigenstate of the enlarged 7.

We first describe the process of adding an extra layer to the X-cube model, illustrated in
Fig. C.1. We begin with an L X L X L X-cube ground state, [¢x), an L X L toric code ground
state, [¢rc), and a collection of L? additional qubits initialized in the |0) state, Z|0) = |0).

The statement of foliated fracton order is that an L X L X L + 1 X-cube ground state, |1’y ),

263



Appendix C. Appendix to Chapter 5

can be written as

k) = S (Jox) @ liro) @ 10)"°)

where S is a series of local unitary transformations, which in our case is given by a collection
of CNOT gates [450].

This foliation allows us to deduce the behavior of n in Eq. (4.5) applied to |¢y) based
on the action of STnS on the three constituent states, assuming L is even. This behavior is
dependent on the form of n. We first begin with an analysis of nz = [[; Z;. Carrying out
the corresponding CNOT gate transformations, we see in Fig. C.2 that the action of STn;S
on the original X-cube ground state is not simply the product of all Z; operators—some sites
are missing in a way that cannot simply be compensated by a product of stabilizers; this
means that [x) ® [rc) @ |0>L2 will generally not be an eigenstate of StnS. Carrying this
through with nx = [[, X; and ny = [[,Y; yields a similar result. In accordance with the
analysis of the main text, we conclude that not every ground state of an even-by-even-by-odd
X-cube model will be an eigenstate of 7, as the foliation process complicates the behavior of
the metric operator.

One can take this L X L X L+ 1 model and attach additional toric code layers in either of
the two remaining directions, and an identical analysis implies that even-by-odd-by-odd and
odd-by-odd-by-odd ground states will not all have the same eigenvalue under 7. Of course,
one can add another toric code layer to give an L X L X L+ 2 model, in which case the metric

operator does decompose nicely into the metric operators on the constituent ground states.

C.3 Haan’s CuBic CODES

In this section, we provide a more detailed account of Haah’s 17 cubic codes, and the be-
havior of their ground states under pseudo-Hermitian perturbations. Throughout, we assume
periodic boundary conditions as before.

Haah’s 17 CSS cubic codes [174] are defined on a cubic lattice, with two Pauli spins on
each vertex, 7. There are two classes of stabilizers—one consisting solely of Z operators, and

the other with X operators. The structure of these stabilizers is detailed in Fig. C.3 and
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Figure C.1: The size of an X-cube model ground state can be increased along one axis by
adding a layer of toric code (blue) and an additional set of qubits initialized in the |0) state
(red). A series of CNOT gates are applied to this tensor product of states to yield an enlarged
X-cube model ground state. The application of the CNOT gates is shown above, with arrows
pointing from the control to the target qubit. The CNOT gates are applied in two steps—the
gates in the top diagram are used first, then the gates in the bottom diagram are applied.
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Figure C.2: The behavior of the metric operator n on an L X L X L + 1 X-cube model
ground state can be calculated by an effective operator, STnS, acting on the exfoliated parts
of the X-cube model. Here, we show the action of ST5zS (top) and STnxS (bottom), where
the effective operator is the product of Z (X) operators on all the dark sites. The tensor
product of the exfoliated parts of the X-cube ground state is not generally an eigenstate of
the corresponding effective operators. The decomposition of 7y is identical to that of nx.
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Table C.1. In the polynomial representation used in Sec. 4.5.1, the stabilizers take the general
form Z(f,g) and X(g, f) for polynomials f and g. As stated in the main text, these codes
admit a large set of possible pseudo-Hermitian perturbations that leave the code subspace
real: in analogy to Eq. (4.5), a very natural set of choices for the metric operator 7 is given
by Eq. (4.14).

Since all the stabilizers in Haah’s cubic codes are mutually commuting, all ground states
have the same eigenvalue under n, provided 7 can be assembled by stabilizers. For the toric
code, the X-cube and checkerboard model discussed in the main text, it is straightforward
both to find the combination of stabilizers that yield n on a lattice with an even number of sites
in all directions, and to show that 1 cannot be made of stabilizers on any other lattice. For
Haah’s codes, the more complex form of the stabilizers makes the analysis more demanding,
but possible using the polynomial representation of stabilizers [302].

Using the same conventions as in Sec. 4.5.1, the metric operators in Eq. (4.14) can be

written as

n = Z(h,h), X(h,h), iX(h,h)Z(h, h),

B = Z Z ij—lyk—lzé—ll

j=1k=1/¢=1

We will first consider n = Z(h,h). For stabilizers Z(f,g), a choice of covering (i.e., a
product of stabilizers at different points) can be specified by a covering polynomial k, with
the covering given by Z(kf, kg). For example, if k = 1+ x, then the covering Z(kf, kg) would
consist of the product of two stabilizers—one at the origin, and one at (z,y,2) = (1,0,0).
Therefore, the question of whether 1 can be assembled from stabilizers is equivalent to the
question of whether h = kf = kg for some polynomial k. Mathematically, this factorization
takes place in the quotient ring P/I, where P is the ring of polynomials of three variables
with coefficients over Fo, and I is the ideal generated by = + 1, y™v + 1, and 2% + 1. This
quotienting procedure imposes the periodic boundary conditions of the model.

We calculate this factorization with the computer algebra system SageMath. Generically,
this factorization procedure will yield two different coverings, h = k¢f = kyg. To determine

whether these two coverings are compatible, we calculate whether k¢ + k4 can be separated

267



Appendix C. Appendix to Chapter 5

into two polynomials d¢ + dg, where dy € (I : f) and dy € (I : g), where (I : f) is the colon
ideal, (I : f) ={p € P :pf € I}. This is equivalent to checking whether ks + k4 belongs to the
ideal generated by (1 : f)U(I : g). If such a separation exists, then kf+dy = kg +dy = k, and
h =kf = kg in P/I. This covering may not be unique, as k + dy, also works as a covering,
where dfg € (I : f)N (I : g); however, for the purposes of understanding the behavior of non-
Hermitian perturbations, we are only interested in the existence of such a covering. We note
that this procedure should always be able to find a covering k if it exists, so if a decomposition
k¢ +ky = dy + dy does not exist, it should imply the non-existence of a covering.

Once we have obtained the covering k for Z(h,h), we immediately know that X (h,h)
in Eq. (C.11) can be assembled from X-stabilizers with the covering k, since X (kg, kf) =
X(h,h) = X (h,h).

This calculation is done in SageMath for system sizes L, X L, x L, for 1 < Ly, Ly, L, < 19.
Although the existence/non-existence of a covering follows no clear pattern for very small
system sizes, we see regular behavior emerge once the system size is larger than 3 x 3 x
3. Specifically, the existence/non-existence of a covering for a certain cubic code is only
dependent on whether each length is even or odd and, if it is even, whether it is divisible
by 4. This admits 3% = 27 different possible classes of system sizes—however, we find that
some classes are equivalent in terms of which cubic codes have coverings on them. A full
table of this behavior is shown in Table C.2. We note several trends. On an odd-by-odd-
by-odd lattice, none of the 17 cubic codes have code subspaces that stay real under pseudo-
Hermitian perturbations. If only a portion of the system lengths are odd, the reality of the
code subspace depends on which dimensions have odd lengths, and whether the remaining
lengths are divisible by 4. In contrast, if L, and L, are divisible by 4 and L, is even, all
the code subspaces stay real under pseudo-Hermitian perturbations. Overall, cubic code 17 is
the most unstable to pseudo-Hermitian perturbations, in that its code subspaces will become
complex for almost all system sizes. In contrast, cubic code 7 has the most stable code
subspace. There are some groups of codes with the same sensitivity to system sizes. If we
consider codes with the same behavior up to a lattice rotation, these groups are (11,12, 14, 15),
(5,8,10,16), and (2, 3,6,9). It is interesting to note that, with the exception of cubic code 16,

all codes within a group transform the same under entanglement renormalization [115]. Note
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D’ C’

Figure C.3: The stabilizers of Haah’s cubic codes correspond to cube operators, with generi-
cally different operators on each vertex as labelled by A-D and A’-D’. The operators at each
vertex for the 17 different cubic codes are given in Table C.1.

that cubic codes related by modular transformations [114]—specifically, cubic codes 5/9 and
15/16—may have different system size dependencies. This is because a stabilizer covering in
one model will generically transform non-trivially under modular transformations. In other
words, the existence of a stabilizer covering in one cubic code does not imply the existence of a
stabilizer covering in another cubic code related to the original by a modular transformation.

While our results are purely numerical, an analytic verification of these trends for all
system sizes is likely possible if one was to manually follow the factorization processes carried
out in SageMath and show that their conclusions are only sensitive to the system sizes’
evenness/oddness and whether they are divisible by 4. We do not attempt this, as there
are 459 separate cases that must be checked (27 possible system sizes for the 17 codes), and

instead analyze the numerical results which show clear trends up to 19 x 19 x 19 lattices.
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/A B ¢ D A B ¢ D

1z Zz 17z ZI 1IZ 1I ZI IZ
2117 Zz ZI ZzZI ZzZI ZZ 1Z ZI
3 |\1Z ZZ ZzZ ZI ZZ II 1Z 1Z
4 |17 Zz ZzZI ZI 17 II 1Z ZI
5 |\ ZI ZzZ II ZzZ ZI II IZ 17
6 |1 1I Z7ZI ZZ 17 ZzZ 1I 1Z
T\ ZI zZZ ZzZI Iz I1Z II II ZZ
8 |\Z1 71 1z ZZ 1Z II 1Z ZI
9 \Z1 17z ZzZ ZzZzZ 1Z Zz 1I 1Z
1021 1Z ZI ZZ 1Z ZZ ZI ZI
1|\zr zz 11 1z ZI II 1Z ZZ
12\ 71 1Z ZzZ ZZ ZzZI I1I II IZ
3|\zZI ZZ 1z ZI Iz II II ZZ
14\ zZ1 1272 ZzZ ZZ 1Z 1I ZZ IZ
w6 \|\zZI 17 I1I ZZ 17 ZZ 11 ZI
16|21 zI II 1Z 1Z ZZ II ZZ
1w\ z1I Zz Iz ZI 17 ZI ZI ZZ

Table C.1: The Z stabilizers for Haah’s 17 CSS cubic codes, defined on the eight vertices
of a cube, with vertices labeled according to Fig. C.3. The X stabilizers are obtained by
exchanging A <+ A’, and likewise for the other vertices, and by exchanging the two Pauli
spins on each site.
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CCy CCs CCyy
System Size | CCy ggz cey ggi‘o cCy ggi CCi3 CCyy
CCg C016 0015
ExExE
EXxExe v v v v v v v v
e x ExE
ox ExE
E xexE
Exexe v v v v v v v X
exexE
ex ExXE
ExoxE
exexe v v v v v v X X
ExExo v v v v v X X v
e xoXxE
E xoxe
e X oXxe X v v v v v X X
ex Exo
Exexo
exexo
exXo0Xo
E xoxo X v X v v X X X
oxexE
ox E xe
oxXexe X X v v v v X X
oXxoxE
0XoXe X X X X v v X X
ox Exo
oXexo
0X0XO0 X X X X X X X X

Table C.2: The reality of the code subspace of Haah’s cubic codes under pseudo-Hermitian
perturbations are highly sensitive to the system size. The reality of the subspace depends
on whether each dimension length is odd (o), even and divisible by 4 (E), or even and not
divisible by 4 (e). Shown are all 17 of Haah’s cubic codes and the dependence of the code
subspace stability on the system size. Codes with identical dependencies have been grouped
together, and some have been redefined by a spatial rotation. The trends listed have been
confirmed numerically to hold from system sizes 3 x 3 x 3 to 19 x 19 x 19.
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D.1 CONSTRUCTION OF GAMMA MATRICES

In our main text, we outline two possible constructions of Gamma matrices in terms of physical
degrees of freedom. There is much freedom in choosing this representation, with different
representations making different aspects of the resulting dynamics simpler. An alternate
choice is:
=58, I"=5"l,
P=5es, TM=5ol, (D.1)
I’ =9"®5".
The unitary dynamics of our model are governed by a Hamiltonian with terms F}I‘? 47 and

F?F? 45 which translate into three-spin interactions of the form 57 15Y,5%

z x Yy
725715, and 55,5755

Jj+y 1
The jump operator L; = Si 1S ;2 corresponds to a coordinated dephasing term, where the four
energy levels of the pair of qubits are subjected to a stochastic noise which leaves fixed the
energy difference between the [11) and |]]) states, as well as the 1)) and |[[1) states. We

note an especially simple feature of this choice, which is the representation of the string-like

operators discussed in the main text and whose expectation values decay less rapidly than
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single-site operators. A string-like operator corresponding to a pair of d Majorana fermion
excitations that lies along the z-direction is given by I' ]1 Fjl.f_gl“ ]13_25 e F? +ng» Which in our rep-
resentation corresponds to a string of SY operators with an S* and S operator on either end.

Similar simplifications arise for strings in the y directions, as well as strings corresponding to

d’ Majorana excitations.

D.2 NON-VANISHING STEADY-STATE EXPECTATION VALUES

In the main text, we claim that any operator that has eigenvalue 1 under the superoperators
Uj.« and equal eigenvalues under W, g and W, is a product of V;, bond operators. One
can readily verify that these operators satisfy the required constraints, but a more careful
argument is required to show that these are the only operators with such a property. We do
so by counting the dimension of the subspace (within the doubled Hilbert space) spanned by
these operators. With a square lattice having 2N bonds, there are naively 22V orthogonal
combination of bond operators; however, this double counts the true number of operators, as
the product of all bond operators is 1. So, the subspace is 2V dimensional. The full dimension
of our doubled Hilbert space is 2*V, and we have 3NN independent constraints - for each site j,
we have U; 7 =1,U;3 =1, and W g = Wj (the constraint on W 1, is automatically satisfied
under these constraints). Each constraint halves the dimension of the allowed subspace, so

we find a 2V dimensional Hilbert space, as desired.

D.3 DIAGONALIZATION OF THE FREE FERMION LINDBLADIAN

In this appendix, we provide more detail on the diagonalization of the free fermion Lindbla-
dian. For a general choice of gauge sector, we work with the Lindbladian written in terms of

Majorana fermions, as in Eq. 5.14. This can be re-expressed in the form
iL=dl - A-d—iyN (D.2)

where d is a 2N-dimensional vector containing both d;; and d; g Majorana fermion opera-
tors. We follow the procedure described in [372] for obtaining the spectrum of this Lindbla-

dian, which we summarize here. As A is an antisymmetric matrix, its spectrum comes in
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the form {f1,—01,02,—B2...0n,—Bn}, where we take Im 3, > 0. One can construct N
creation/annihilation operators b, b), that obey the canonical fermionic anti-commutation
relations (with the caveat that b, is in general not the Hermitian adjoint of b,). With this,

we can write
N N
iL=-2 Bablba — (in = ,3a> (D.3)
a=1 a=1
The term in parenthesis gives the dissipative strength of the state with weakest dissipation
within this gauge sector. Note that this Majorana fermion representation obfuscates the
constraint of gauge invariance, which is most easily enforced in terms of the complex fermions
fj . As such, this representation is only useful in gauge sectors where pairing terms would

appear if written in the fJT basis, in which case a proper analysis of gauge invariance is equally

difficult in either representation.

D.4 IDENTIFICATION OF SINGLE-SITE OPERATORS WITH FLUX CONFIGURATIONS

In the main text, we emphasize that the spectrum of our Lindbladian decomposes into an
extensive number of symmetry sectors, each of which is specified by a gauge flux configuration.
A Liouvillian gap for each sector can be defined, and one can identify operators - which we
remind the reader should be thought of as states in this doubled Hilbert space - that are
contained in these symmetry sectors, which the Liouvillian gap then defines an equilibration
timescale for. Here, we catalog the flux configurations associated with the set of single-site
operators.

A particular flux configuration is defined by the interlayer fluxes Ujo = Vja =V, gV}, 1
as well as the intralayer fluxes Wj o r, Wj o,r- As our Lindbladian spectrum is invariant under
the transformation W; o r <+ Wj o 1, we will only identify operators based on their eigenvalues
under the combined flux W; o gWj . The eigenvalues of an operator under these fluxes is
simply determined by whether the operators V]’ o and W; commute or anti-commute with
the operators. If we take as our basis of operators to be products of I' matrices, every basis
operator will either commute or anti-commute with VJ/ o and Wj.

The operators I‘z commutes with all plaquette operators W;. It also commutes with all

the bond operators V]' ., aside from the four bonds adjacent to site k. The flux configurations
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2.5

——— 5, ground state
— I, first excited state
——— 2, ground state

2, first excited state

2.0

Gap

Figure D.1: We plot Liouvillian gaps for the gauge sectors associated with I''® and I''?
operators, and demonstrate a sharp jump in the gap when the dissipation is turned on.

associated with this operator are given precisely by the interlayer gauge excitations studied
in Section 5.3.3.

The operators I'Y', u = 1,2, 3,4, commute with all the bond operators Vj’ o except for a
single one adjacent to site k£ which anticommutes with it. Additionally, it commutes with all
but two W; operators - these two offending plaquette operators share a bond given by the
anticommuting VJ’ o, operator. The flux configuration associated with these operators can be
obtained starting from a steady-state gauge sector and flipping an intralayer gauge field on
this bond and its spectrum is analyzed in Section 5.3.3.

The operators F’If’ have the same commutation relations with the plaquette operators as
F;: , but differ with respect to the V]’7 ., operators; it now anticommutes with the three V]: o, bond
operators connected to site k that aren’t the bond shared by the flux operators. This flux
configuration can be obtained from the intraylayer gauge excitation studied in Section 5.3.3
and flipping an additional interlayer gauge field vy.

Finally, we identify the operators Fz”, with pu,v =1,2,3,4 and pu # v. For a given site k,
there are (3) = 6 different operators of this type. These operators will anticommute with two
of the four Vj’ o bond operators, and either two fluxes W; that only share a corner at site k or
all four fluxes connected to site k. These flux sectors are obtained by flipping two intralayer
gauge fields connected to a site k - as expected, there are (g) = 6 ways of doing this.

The Liouvillian gap of excitations corresponding to the I'} operators are shown in Fig. 5.6.

We plot the Liouvillian gap of Pff and I'}” operators in Fig. D.1 and verify that similar
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behavior occurs. This implies that our observation of the rapid equilibration of FZ operators
holds generically for single-site operators, with the exception of FZ due to its interpretation
as the bound state of two Majorana fermion excitations, or alternatively due to the fact that

Fz are precisely the quantum jump operators describing the coupling to the environment.
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E.1 SprIN GLASS ANALYSIS

As described in the main text, the spectral function of the random ¢-J model near half filling
has a peak at low frequency, suggesting spin glass order. To establish this rigorously, one
must show that the variance of the peak goes to zero in the thermodynamic limit while
the integrated spectral weight remains non-zero, indicating delta function-like behavior. We
isolate the low-frequency peak by subtracting off a background contribution, given by the
large-M solution of the SY model. We then fit the remaining low-frequency peak to the

function

" w?
Xlow(w) = wCexp [_M] . (El)

In Fig. E.1, we show the extrapolation of I' to the thermodynamic limit for several values of
doping up to p = 1/3. As expected of spin glass behavior, I' vanishes in the thermodynamic
limit. This is in contrast with the integrated spectral weight of Eq. E.1, which we show in
the main text is non-zero in the the thermodynamic limit and corresponds to the Edwards-

Anderson spin glass order parameter q.
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Figure E.1: At low dopings, the low-frequency peak in the spectral function can be isolated
and fit to Eq. E.1. In the thermodynamic limit, we confirm that the variance I' vanishes up
to p = 1/3. Due to a prominent even/odd particle effect at half filling, we only extrapolate I"
at half-filling for even system sizes.

E.2 THERMAL PURE QUANTUM STATES

The computation of thermodynamic quantities in the main text has been performed using
thermal pure quantum states [469, 470] together with the Lanczos algorithm. This allowed us
to reach system sizes beyond the reach of full exact diagonalization. This approach is closely
related to the finite-temperature Lanczos method [215, 367]. We will now briefly explain the

method. The trace of any operator H can be evaluated by taking random average values,

Tr(A) = D{r[ A7), (E.2)

where |r) is a normalized random vector, (r|r|r|r) = 1, with normal distributed coefficients,
(m|rim|r) ~ N(0,1), and D denotes the dimension of the Hilbert space. Here, {|m)}m=1,.p
denotes an arbitrary orthonormal basis of the Hilbert space and ~~- denotes averaging over
random realizations of |r). Hence, a thermal expectation value of an observable O can be

written as as,

<(9>%Tr(e_BH 0) = BB O1E) (E.3)

(818)
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where Z = Tr(e™#H) denotes the partition function and we define the so-called thermal pure

quantum (TPQ) state [469, 470] at inverse temperature 5 = 1/T,
18) = e 12 r). (E4)

This way, thermal expectation values can be evaluated efficiently using the Lanczos algorithm,
whereas the exact computation of the trace of an exponential requires full diagonalization. In
the main text we present data for the specific heat, internal energy and entropy, which are all
computed from expectation values of powers of the Hamiltonian with TPQ states of the form

(B| H*|3). Using the Lanczos algorithm this quantity is efficiently approximated by,
_B _B8
(818) H* |8) ~ efe™ 2 Tyie 2 ey, (E.5)

where e; = (1,0,..., 0)T and T, denotes the tridiagonal matrix of the Lanczos algorithm after
n steps. The convergence is typically exponentially fast, such that results can be attained up
to machine precision. For a more detailed description of the method we refer the reader to
Ref. [518]. We notice in E.5, that once the Lanczos algorithm has been applied to compute
the tridiagonal matrix, results can be derived at all temperatures simultaneously without
rerunning the expensive Lanczos algorithm.

Instead of one single computation as done for evaluating a trace, using TPQ states requires
us to to perform random sampling with multiple vectors |r) and compute error estimates.
Since expectation values of the form E.3 are non-linear in |r), we perform jackknife resam-
pling [126] of the data. Interestingly, larger system sizes typically require less random real-
izations |r) to obtain comparable errorbars. Refs. [469, 470] give a mathematical proof, that
for a constant free energy density, the variance of the estimate in E.3 is exponentially small
in the system size. In the main text we typically average over R = 5 random realizations of

the TPQ states.
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Figure E.2: (a) The thermal entropy S as a function of doping for various temperatures. Black
dots show the ansatz Eq. E.6 at optimal fitting parameters. (b) Estimates of the parameters
in Eq. E.6. p corresponds to the doping value with maximal entropy, s corresponds to the
maximal entropy density.

E.3 TEMPERATURE DEPENDENCE OF THE THERMAL ENTROPY

In the limit 7" — oo the thermal entropy S attains a maximum exactly at p = 1/3 for N — oo

in the canonical ensemble. The ansatz,

~Klp-pM+5 forp<p
S/N = , (E.6)

—Klp—p™+3 forp>p

is found to describe our entropy data with considerable precision. A comparison between the
ansatz (black circles) and the ED data is shown in Fig. E.2(a). The parameters p, S, A\, Az,
and K are fitted for dopings p € [0, 0.75] using the Levenberg-Marquardt algorithm [277, 306],
from which we obtain an (error) estimate of the parameters, shown in Fig. E.2(e).

Our estimate of p is increasing when lowering the temperature below T'= 0.25. At T' = 0.05

and N = 18 we obtain an estimate,
p~0.296 £ 0.025 [from S(T = 0.05)]. (E.7)

This value is consistent with the maximum of -, observed in the main text. However, we find
that both increasing the system size and lowering temperature increases our estimate of the

critical doping p when estimated as above. At temperatures below T' = 0.05 estimates are
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found to be unreliable due to sample fluctuations.

E.4 SELF-AVERAGING, ELECTRON DISTRIBUTIONS, AND THE LUTTINGER THEO-

REM

E.4.1 SELF-AVERAGING FROM THE CAVITY METHOD

In this section, we establish that, in the thermodynamic limit N — oo, some local observables
have self-averaging properties in this fully connected random model. This means that, when
considered for a given site, they converge with probability one to their average over samples.
We also establish the connection to extended dynamical mean-field equations (EDMFT) that
allow for a direct study of the model in the thermodynamic limit. We do not consider the
spin-glass phase in this section.

For the sake of generality, we consider the finite-U version of the model, the ¢-J limit

corresponding to U = co. The model is defined on a fully connected lattice of N sites by the

Hamiltonian:
H=- Y tjclce+UD ngny— Y Ji;Si- (E.8)
ij,o="1 ( 1<j
with:
tij = Lfij s Jij = = (E.9)

JN JN Nij
In these expressions, € and 7 are random variables of zero mean and unit variance. The precise
distribution is not important in the infinite-size (large-N) limit, as shown below.

Let us consider a fixed sample {e;;,7;;}, and envision formally integrating over all sites
except a single one (denoted by i = 1). The lattice with the ‘cavity’ removed (consisting of
that site and all connections through t1; and .Jy;) is in this case just a fully connected lattice of
N —1 sites. We follow the procedure in Ref. [154],Sec.III.A: in the large-N limit, the effective

action for site 1 obtained after integrating out all other d.o.fs is:

Serll] = = [ [y drdr’ S, el (7) (0(r = ') (=0 + ) = Au(r = 7)) 1o (7') +

—

+ Ufég drnisny — %foﬁ drdr’ Q(r — 7)S\(7) - S1(7). (E.10)
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All higher order correlators are lower order in 1/N (finite-size corrections). The dynamical
mean-fields, i.e the hybridisation function A; and retarded spin-spin interaction )1 are given

by the cavity equations:

t2 1 J? 1
A=+ ) evey ng] , Qu="y > mimy XEJJ (E.11)
i1 i.j#1
In this expression Gj;(7 — 7') = —<Tc;-r(7')cj(7")> and x;j = (S; - §;)/3 are the Green’s func-
tion and spin-spin correlation function. The superscript Gl means that we are considering
these quantities for the subsystem of N — 1 spins remaining once the cavity (site 1 and its
connections) has been created.
Let us analyze Egs. (E.11) for the hybridisation function, separating diagonal and off-
diagonal terms:
N
t2 2 G[l] t2 G[l] E.12
—NZEM it Y e Gy (E.12)
i=2 i j# LA
The key point is that G[ I do not depend on the random wvariables €1;. Taking the N — oo
limit amounts to take a disorder average of these terms, and because of this independence,
the average applies separately to €1; and Gl[-ll-]. The second term (i # j) averages out to zero,
and the first one yields finally:

= ¢? lim ZG, =1?G , (N = ) (E.13)

N—oo

In which the overline denotes an average over samples. We are assuming here that there is
no ‘ergodicity breaking’ in the phase being considered: the average over sites is equivalent to
an average over samples. Hence, the dynamical mean field A does not depend on the specific
site or on the specific sample, in the infinite size limit: it self-averages. A similar reasoning
applies to ). Finally the self-consistent equations read for infinite size (I am dropping the

overlines and site index everywhere when there is no possible confusion):
Aliwy) = t2 G(iwy) , Qiw,) = J? x(iwy) (E.14)

in which the local (i = j) correlators G and x have to be calculated with the effective action
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(E.10) - that’s the EDMFT construction.

For completeness, we recall that the (local) self-energy in the infinite-volume limit is given
by the difference between the inverse of the interacting and non-interacting Green’s functions,
namely:

Y(iwn) = iwp + p— Aiwy,) — G_l(iwn) = iw, +p—t?G -Gt (E.15)

A and the local Gy; being self-averaging, ¥;; also is.
Incidentally, for the non-interacting system (U = J = 0), ¥ = 0 and the solution of the
quadratic equation: z — t?G — G~! = 0 yields the non-interacting local Green’s function

(z = iwy, + p, but the formula is valid for any z in the complex plane):

Go(z) L [z — sign[Im(2)] V2% — 4t2} = [ de Deo(e) (E.16)

T z—¢

from which the (Wigner) semi-circular distribution immediately follows:

1 1
Doo(e) = —;ImGo(s +i0") = 57 VAat2 —e2 | e € [-2t,+21] (E.17)

E.4.2 GREEN’S FUNCTION AND ONE-PARTICLE ENERGY DISTRIBUTION

We can use the eigenstates of the one-particle non-interacting problem (U = J;; = 0) as a
basis set to represent any single-particle correlation function of the interacting problem. These

states are defined by, for a given sample ¢;;:

HA) =exlA) , Le D> ti; (IA) = exilA) (E.18)

J

The Fock space of the many-body problem is constructed as the number occupancy states
[{n,}) and is a full basis for the many-body problem. The single-particle DOS of the non-

interacting system reads:

Dij(e) = WZM&—&A) (i[A) (Al7) (E.19)
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In the N — oo limit, D;; converges (and self-averages) to the semi-circular DOS Do, defined
above.

Consider now the interacting system, for a given sample ¢;;, J;; and finite N. We define
the one-electron Green’s function in the usual way G;;(7 —7') = —<TCZT(7')CJ- (7)), but it can
actually be viewed as a one-body operator G that we can look at in any basis set, for example

in the eigenstate basis:

G (iwn) = A GN) =" (i) Gij(iwn) (§] ) (E.20)

)

Note that for a given sample and finite IV, this is not diagonal in A. Correspondingly, a
self-energy o0;; can be defined as (we are careful to use a different notation here, since this is

for a given sample and finite N):
G '=iw,+p—1—35 ,insitebasis : [G™Yij = (iwn + p)dij — tij — i (E.21)

Things get simpler in the infinite-volume limit. The off-diagonal components of the self-
energy o;»; vanish, and the diagonal ones self-average and converge to the local self-energy

defined above: o0;; — X. Hence, the expression of the Green’s function becomes:
(G 1 = [iwn + o — B(iwy)] 855 — tij , (N — 00) (E.22)

Note that off-diagonal components of the Green’s functions do not self-average. They are
individually of typical order 1/ VN, but we have to take them into account when calculating
the kinetic energy for example, since we sum over all bonds. Given (E.22), the Green’s
function for N = oo now acquires a simple diagonal representation in the basis of eigenstates

of #:
1

iwn, + 1 — S(iwn) — €x (Al7) (E.23)

Gijiwn) = > (ilA)

A

It is convenient to define the (sample independent) Green’s function for a given energy € in
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the semi-circular ‘band’ as:

1

G ) mny = . .
(iwn, €) iwn + 1 — X(iw,) — &

(E.24)

which is the natural quantity we would routinely look at in the EDMFT framework. The
connection between this and the Green’s function for a given sample, in the infinite size limit

N = o0, is given by:
G (iton) — / de Dyy(2) Glitonm, 2) , (N = o) (E.25)

Let us now consider (for a given sample and any N) the one-body distribution function:

Na = (Aa) = D (i) D (cheio) GIN) (E:26)
ij o
In the non-interacting case, the ground-state is a Slater determinant of the A states, and hence

at T'=0 Ny = 1 for all filled states and 0 for empty states. We can more conveniently look

at it by filtering in energy and define:
Nie) = Z(s e—e\Ny = N; £ — e zj; (i) (el cio) GIA) (E.27)

which can also be written:

=" Dyj(e) (cl,cj0) (E.28)

ijo

obeying (with n the electron density):

/ de N (2) = % n (E.29)

We can also sample average and consider N (¢).
Now we establish the connection, in the N = oo limit, between this distribution function and

what we would naturally calculate in the EDMFT context, which is the number distribution
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function as a function of the single-particle energy:

1 N 1
N(e) = 2G(1=0",¢) = 2= wwn0 E.30
(@ = 26(r=00) = 25 e (5.30)

The factor of 2 is for the sum over spin. We note that:
/dEDOO(E)N(E) =n (E.31)

Using (E.25), we obtain:
NG = 36— £)N(ey) = Ducl)N() , (N = ox) (E.32)
E_N)\Eg’\ ex) = Doo(e)N(e) =0 .

E.4.3 LUTTINGER'S THEOREM.

In the (self-averaging) infinite volume limit, the Green’s function G(w, ) has a pole w(e) given

by the quasiparticle equation:
w+p—ReX(w+i0") =¢ (E.33)

where we have assumed that at low w, T’ the imaginary part Im¥(w +1407") is negligible. Hence

the ‘Fermi surface’ (for a typical large sample) is located at:
erp = u— ReX(0) (E.34)
In the non-interacting system, the Fermi level e is given by:

n = 2/€F de D(¢) (E.35)

—00

Hence, for a fixed density, the Luttinger theorem (Fermi ‘surface’ unchanged by interactions)

translates into the following requirement:

pu(n) —ReX(0) = ep(n) (E.36)
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In the Fermi liquid phase, this can be established following the usual proof based on the

existence of a Luttinger-Ward functional.

287



Appendix to Chapter 4

F.1 PATH INTEGRAL CALCULATION OF FLUCTUATIONS

In this Appendix, we review the procedure for calculating the fluctuations of observables in
disordered systems using the path integral approach.

Calculating statistical quantities in disordered systems, such as averages and variances, is
in general a non-trivial task. This arises from the fact that correlation functions such as
G(1 — 7') for a given disorder realization J;j;; (this notation is specific to an SYK model,

which we will use without loss of generality) are given by functional integrals of the form

T . T . / 7S[C7Ct 7Ji'kl]
N f DCTDC e*S[C:dL n]ijkl}

The mean of this quantity over an ensemble P(J;;1;) is given by integrating it over all realiza-
tions of J;j;r;. This averaging cannot simply be done, as Eq. F.1 is a ratio of two quantities.
What can be done analytically is carry out the average of the numerator and denominator

separately - this constitutes treating the random variables .J;;,; on the same footing as our

T

physical variables c; ,c;. Treating the disorder average properly requires techniques such as

the replica trick [123], which we will employ here. Supersymmetric techniques have also been
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developed for dealing with these averages [124], which is the primary method used for cal-
culating conductance fluctuations of free electrons and generally yields more reliable results
than the replica approach, the latter of which requires a generally-uncontrolled analytical
continuation of the number of replicas M — 0. However, these supersymmetric techniques
are not appropriate for including the effects of strong interactions. Recent advances have
generalized these supersymmetry techniques to a particular variant of the SYK model [431],
and an interesting direction for future research would be to see whether such an approach is
applicable to our model or a variant thereof that would allow for more controlled calculations
of transport fluctuations.

Here, we make explicit the setup we use to calculate fluctuations of quantities like G(iw).

What we are interested in is the covariance of the Green’s function at different frequencies,

such as ﬁ > [Gii(iw)ij (i€) — Gyi(iw) ij(ie)} . Using the replica trick, we can rewrite the

product of Green’s functions G(m — 72)G(73 — 74) as a functional integral taken over two

~q!  ~ta’ . . . . . . .
e, Ia ,c¢ ,cj»a , with i a site index and a, a’ replica indices,

copies of fermionic variables,c{ 2

1 'i'a ~TCL/ / — S J.ra @ Jiikl]— 'S o i,
S i [ S ) () (rape S Sl ol S &
1<a<M 2,
1<a’<M’

(F.2)
We can dispense of the independent replica summations and the distinction between ¢ and ¢

by combining them into an enlarged summation,

b 5 Sl et il
A9§0N2M2 2. /ZC m)ef (ra)ey (ra)j(ra)e >a T Ak (F.3)
l<ap<M” i

a;éb

The action S is a function of the random variables J;;1;, and the disorder average is performed

over the above quantity. Doing this induces interactions between the different replicas. Sub-

tracting off the disconnected contribution, G(m; — m2) G(73 — 74) constitutes disregarding con-

tributions that do not contain any interactions between the two replica indices. An analogous

treatment of the off-diagonal covariance, >ij | Gig(iw)Gjilie) — Gyj(iw) Gji(ie)} leads to
an expectation value of the form cTa( 71)c(T2) T»b(Tg) A(74).
For our calculations, we will proceed perturbatively starting from the replica-symmetric sad-

dle point. If we use this as our starting point, our propagators will remain replica-symmetric
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to all orders in perturbation theory [19]. It has been shown that for free fermions, this ap-
proximation is sufficient for accurately recovering the leading-order contribution to the mean
value of G(r; — 72), although N~! corrections require replica-off-diagonal saddles [230]. For
four-point functions like Eq. F.2, it is known that a replica-diagonal ansatz is insufficient for
reproducing the full spectral correlations of random matrix theory [490] for small O(N~1)
energy differences, but can be recovered by considering off-diagonal saddle manifolds [230)].
This discrepancy is not relevant for our analysis, as we will only be interested in spectral

correlations over O(T') energy differences.

F.2 REPLICA OFF-DIAGONAL FLUCTUATIONS IN THE (G, X) ACTION

The calculation of the Green’s function covariances may be performed within the formalism of
the (G, X) path integral, which we describe here. Although this perspective does not provide
a direct computational advantage over the fermionic diagram approach in the main text - all
non-trivial integrals are still present - it admits an explicit N~! expansion, in contrast with
the diagrammatic approach in the main text where the task of writing down all diagrams that
contribute at a given order requires careful analysis of index summations. The approach here
is more easily generalizable to the calculation of higher order moments, and also provides a
more general framework for understanding which observables obey a straightforward crossover
from SYK-like to Fermi liquid-like as a function of temperature and which ones have more
subtle crossover behavior - the former are functions of only the saddle point solutions of the
(G, Y) path integral, whereas the latter are properties of fluctuations around the saddle point.
Here, we rederive the off-diagional Green’s function covariance, p,, using this formulation.
We begin with a derivation of the (G,3) path integral. Recall that our Hamiltonian is

given by

N N
1 1
H = ONEE E Jij;klcjc}ckcl + N2 g tijc;-rcj — E c;rci (F.4)
ij;kl=1 ij=1 i

where Jj;.,; and t;; are complex random numbers with zero mean and variances J? and 2,
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respectively. In path integral form, we have the partition function
Z[nM = / DJDtDcDet e~ Zat1 Sal]

S.[J] = Z/dT C;-ra(T) [(87- — ) 655 + ]\7;?/2 cj(7) (F.5)

1 e
* WZ / dr Tyl (r)el () e (r) e (7)
i3kl

Integrating over disorder, our path integral becomes

We now insert the field
1
ab _ ta b
G, m) = E ¢ (11)¢i(m2) (F.7)

where the equivalence is enforced with a Lagrange multiplier Eab(n, 72). The ¢, ¢! fields can

be integrated out to yield the action

S|G,X¥.h a a
[]\7] =—In det(—@T +u— E) - z{;/d’ﬁ’z (E b(Tl,TQ)Gb (7’2,’7'1)
@, (F.8)
J2 2 t2
+ (G“b(n,Tz)Gba(Tz,ﬁ)) - 2G“b(71772)Gb“(Tz,71)> :

We take the replica-diagonal saddle point, G® (71, 73) = 843G (11 — 72) and likewise for %%,
The replica-diagonal Schwinger-Dyson equations are given by Eq. 8.46 in the main text - as
emphasized earlier, it is the solution to this set of equations that displays a crossover from
SYK-like for T' > E.., to Fermi liquid-like for T < E¢on. This saddle-point solution does not
contribute to the Green’s function covaraince; to obtain a non-zero value, we must consider

fluctuations around it, G (71, 79) = 6 G(11 — T2) + 0G® (11, T2).
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In this representation, our observables of interest are

9o(T1,2,34) = % Z [Gij(Tl — 12)Gji(13 — 14) — Gij (11 — 72) Gji (T3 — T4)
7 (F.9)
= <G“b(7'1 — Tg)Gb“(Tg —T4)) — %<G(w’(7'1 — Tg)be(7'3 —74))

for a # b. Note the subleading correction in g,, which arises from the ¢ = j term in the
disconnected contribution (the “standard” disconnected part of g, vanishes due to the fact
that (G%) = 0 for fluctuations around the replica-diagonal saddle point).

These replica off-diagonal observables vanish at the replica-diagonal saddle point. To find
the leading order non-zero result, we expand the action around its saddle-point solution. The
expansion of everything other than the determinant is rather straightforward. For evaluation
of the determinant, we use Jacobi’s formula

1 Odet(—0; + p—X)
det(—=0; + p—3X)  9%®(1y,79)

0x
82‘”’(7’1, 7'2)

=—Tr (-0, 4+pu—%)"
(F.10)
ba

=— (=0, +pu—=2)"" (r2,7m1) = —0upG(72 — 1)

where in the final line we evaluate the expression at the replica-diagonal saddle point. To

second order, we use

1 0? det(—0, + pu —X)
det(—=0; + p — ¥) 0% (11, 79)0%(73, T4)
1 0

_ B B B eyl 9%
= T30+ =) 95y, ) {de‘:( O tu E)Tr{‘ Or t = %) azabm,m”

= 0ap0cdG (T2 — 11)G (14 — 13) — Tr [52“17(;52@(4
(F.11)
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This leads to the quadratic action

0S[6G,6%] 1 ab ba

— _21;[2% GoxetGos™|
t2

—/dTl d7'2 5Gab(7'1,7'2) |:5Eba(7'2,7'1) — 25Gba(7'2,7'1):|

ey (F.12)

/ dr dmy <2G(T1, 72)G(72,11)0G (11, T2)0G** (T2, T1)

+ G(7, T2)26Gaa(7'2, 71)0G (1, TQ))

The trace notation in the first term is shorthand for four time integrals, i.e. Tr[GX] =

—~ : : - -

— - : > o

<Eabzba> <Eabia> <Gabia>

Figure F.1: We illustrate the propagators for use in a diagrammatic expansion in N ! around
the saddle point of the (G,X) action. The fields G and ¥ are a function of two times and
two replica indices, which necessitates the sheet-like representation above. The colors indicate
different replica indices a, b, and solid (dotted) lines indicate a G (X) field.

AAAAAAAAAAA e
Nindet(—0, +pu—X) ~ N/ \\ N \

g ;

Figure F.2: Interactions arise in an expansion around the (G, ¥) saddle point from expanding
the Indet(—0; + u — X) term, which leads to arbitrary order sheets for which 3 propagators
can be attached to

f dre dmy G(7a, 75) (73, 7). We can invert the quadratic action to obtain a propagator, which

we can do separately for the replica diagonal and replica off-diagonal components. For the
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Z*
~ N J?

Figure F.3: Within a diagrammatic expansion around the (G,Y) saddle point, the SYK
interaction generates a vertex such that four GG fields can be attached at a “seam.”

latter, we have

2
—t 57’177'357'277'4 57’177'357'277'4

671773672774 —G(11 — 13)G(T2 — T4)

205
_W: d7—1,2,3,4 6Gab(Tl,T2) (52(1[)(7'1,’7'2)

5Gba(7'4,7'3)
X

621)&(7—4; 7-3)
(F.13)

The matrix must be inverted, which can most easily be done in Matsubara frequency space.

This leads to the result

_ G (iwn )G (i€y)
SGatb SGb#a wn (T1—73) —i€n (T4 —T2)
(OG72(71, m2)0G"* (T4, 73)) = ﬁz Z 1 — 12G (iwn)G (i€n)

1
1 — 2G(iwy,)G(i€y) (F.14)

Wn,,1€n,

R )G (1)) = g 3 €
mny n t2
1 —t2G(iwy)Gliey)

(087 (11, 1) 07 (14, 73)) = N — Y eiennTTs) e ()
W i€n

This gives the expected result for g, in Eq. 8.21 of the main text once the trivial disconnected

piece of g, is subtracted off. Note that for ¢ = 0, while (§G*3G%®) is non-zero, its contribution

to g, is subtracted off exactly by the disconnected piece. Hence, the leading order contribution

to g, when t = 0 is given by the first correction to the G® propagator, illustrated in Fig. F.4.

This corresponds to the fermionic Feynman diagram shown in the top of Fig. 8.3 in the main

text.
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T4
T3
p)

T1
<Gab Gba >

T1T2 TAT3

Figure F.4: We illustrate Feynman diagrams that contribute to the off-diagonal Green’s func-
tion covariance in a pure SYK model. For a model that includes random hoppings, there
exists a non-trivial contribution in the bare 6G®§G* propagator; for a pure SYK model,
this contribution is subtracted off exactly in the covariance and one must include the leading
order correction to obtain a non-zero result.

F.3 STATISTICS OF RATIO DISTRIBUTIONS

Here, we provide a summary of relevant results involving ratio distributions, which we utilize
for calculating statistical properties of the thermopower.

We take X1, X5 to be two correlated Gaussian random variables, with means 1 2, variances
0%2, and correlation coefficient . Our quantity of interest is the random variable Z = X; / X,.
The probability density function f(z) of Z can be obtained from the joint density g(z1,x2)
of X 1,2,

o0
1) = [ Wlatev)dy. (F.15)

—o0
This function along with the cumulative distribution function F(z) = [*__ f(x) dz are known [189].
However, much like the Cauchy distribution - which is a limiting case of a ratio distribution
when the numerator and denominator have zero mean - the integrals [*_2z°f(z)dz, a > 1

do not converge and the mean and variance are formally ill-defined.

One can make progress in the limit where |o3/pu2| — 0; or in other words, when the
probability of the denominator in Z becoming negative is zero. This result can equivalently be
derived from the assumption that Xs > 0 which implies F'(z) = P(x1/22 < 2) = P(x1— 212 <
0). Note that for our physical quantity of interest, the denominator is given by the integral
of the single particle density of states weighted by the derivative of the Fermi function, which
is strictly positive. Therefore, such manipulations are actually justified exactly, although this
fact becomes less apparent when we only consider the leading order moments and take the

distribution to be Gaussian. Since the sum of two correlated Gaussians is also a Gaussian,
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this gives the cumulative distribution function

F(z) = ( fez — ) (F.16)

Vo2 —2zroi09 + 2203

where ®(x) is the cumulative distribution function of a Gaussian random variable, ®(z) =

[ 0y) dy, 6(a) = e

For small fluctuations around the mean value, Z = py/p2, we have

z— z—7Z
) - kL (F.17)
\/a1 — 2zro109 + 2405 \/gf _ Zowos o2
2

a.
< 2
Ky H1k2 K3

which yields the approximation to normality, with variance

Var z - ﬁ 2ro109 (ﬁ (F.18)
z? pio opape o opy '

In the main text, we find several situations where the numerator and denominator are
highly correlated such that r = 1 — O(N *1), where we use N as a stand-in for a generic
large dimensionless parameter, which depending on the context may refer to either the actual
system size or 7'/ Eeop,. To leading order in N !, we therefore have perfect correlation between

the numerator and denominator, leading to

2
Varz (01 _ 02) Lo Y. (F.19)
z H1 o M2

Working in the limit of perfect correlation means that we may think of X; and X5 as arising
from the same normal distribution X, i.e. X7 = 01X + p1 and X9 = 09X + po. The
ratio distribution is still non-trivial even if both variables arise from the same probability
distribution. However, it does imply a special limit o1/p; = 09/u2 where the distribution
becomes trivial and the variance vanishes due to the numerator and denominator being directly
proportional to each other. In this limit, the variance incurs an additional N~! suppression
due to the necessity of expanding out r to higher order. This prediction is confirmed by

numerical simulation, see Fig. F.5. We take 10000 samples of the ratio distribution Z for
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parameters a% = 1.5, a% =1, uy =10, r =1 —1/N, and variable p,. We fit the power law
scaling of the variance as a function of N for 500 < N < 10000 and plot the exponent while
varying u.. As expected, an anomalous suppression of the variance appears at the critical

value where o1/u1 = o2/ pa.

0.0

Z _0'2 -
~
=
z
3]

g —04
.8
—
<
S
B

o0 —0.6
R=
I
Q
n

_08 -

1 1 1 1 1

0
Ml MZ

0 P

Figure F.5: By drawing from a ratio distribution, where the correlation coefficient between
the numerator and denominator is given by 1 — 1/N, we fit the variance to an N form and
plot the exponent a. When the probability distributions are tuned such that o1/u; = o2/ e,
we obtain a N~! suppression of the variance.

F.4 CONDUCTANCE FLUCTUATIONS FOR SINGLE-LEAD COUPLING

In the main text, we present results for conductance fluctuations for a model where we take our
leads to be coupled to all sites with equal magnitude. To leading order in N~!, fluctuations are
controlled by the off-diagonal Green’s function covariance p,. If we instead choose to model
our leads as only being coupled to a single site in the quantum dot, our results are modified
as fluctuations are driven by the diagonal Green’s function covariance pg, which is generically
suppressed relative to p, by an additional factor of N~!. Note that this contribution is still
present in our model in the main text, but is ignored in virtue of this N~! suppression. We

present results for both p, and pg in the main text but focus on conductance fluctuations for
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fully-connected leads. Here, we present results for conductance fluctuations that arise from
pd, which are subleading in N ! for fully-connected leads but are the dominant contribution
for leads coupled to a single site. We remind the reader that average conductance is insensitive
to this choice and remains the same as in the main text.

For a free fermion model, we have the physical interpretation that p; gives the covariance
of the single-particle eigenvalues, the form of which is universal and well-known from random
matrix theory. In particular, the variance of linear statistics such as the conductance is given

by the Dyson-Mehta formula [121, 122], which yields the conductance variance

2 2
Var opp = (eth;V> 3€r(43) . (F.20)

For a pure SYK model, our expression for pg given in Eq. 8.40 yields

2r\* 0.07

We now consider the case with both SYK interactions and random hopping terms. For the
low temperature Fermi liquid phase, we predict a scaling similar to the free fermion result in
Eq. F.20, but with a renormalization which can be deduced on dimensional grounds to be

Te? E
RTN J

2
Var o4y x o< < ) , T <K B - (F.22)

For the SYK regime, T' > E.q, we find nearly identical to the case considered to the main
text, due to the fact that in this regime, pg(w,€) = N~1p,(w,€) to leading order in Eop /7.

Hence,
Ie? ¢
ANT J

2
Var o5y Kk = 2.02&2 < > , T > Feon . (F'23)

Note that this is the same scaling as in the Fermi liquid regime, albeit with the crucial

difference that the overall coefficient is proportional to the particle-hole asymmetry.
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