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Numerical evidence for a gapless Z2 spin liquid in the J1-J2 model

Our model of interest is the spin-1/2 antiferromagnetic J1-J2 model on the

square lattice,
H = J1

∑
〈ij〉

Si · Sj + J2
∑

〈〈ij〉〉
Si · Sj

Although the nature of the ground state in the regime of strong frustration

(J2/J1 ≈ 0.5) has been an open question for decades, a recent set of numerical
studies in [1, 2, 3, 4] give evidence for a stable Z2 spin liquid phase bordering

Néel and VBS orders.

Towards a final phase diagram
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Modeling spin liquid transitions via Higgs condensation

We propose that transitions from a gapless Z2 spin liquid conjecture to various ordered phases (Néel, VBS)

can be described starting from the continuum theory of the π-flux phase. This is an SU(2) gauge theory that
is conjectured to be unstable to Néel or VBS ordering [5]. Our theory includes additional Higgs fields, which

can condense to break the SU(2) gauge symmetry to Z2. Proximate to both these phases is an additional

U(1) phase - the staggered flux phase. This phase is also unstable to Néel or VBS ordering via monopole
proliferation [6, 7].

Continuummodel for transitions

To model these transitions, we use the parton construction to describe different spin liquid phases, writing our

spin operators as fermionic spinons:

Si =
∑
αβ

f †
iασαβfiβ .

This rewriting introduces an SU(2) gauge
redundancy. At mean-field level, different

phases can be described by different free

spinon Hamiltonians, with additional correc-

tions coming from gauge fluctuations [8].

The gapless Z2 spin liquid we are interested

in has four Dirac points, and the low-energy

theory is of four massless Dirac fermions

coupled to a Z2 gauge field.

Lagrangian and mean-field diagram

We propose a Lagrangian that describes a gapless Z2
spin liquid, along with instabilities to proximate SU(2)
(π-flux) and U(1) (staggered flux) spin liquids. This La-
grangian contains four Dirac fermions ψ, with matrices
σ (τ ) acting on gauge (valley) space, coupled to three
adjoint Higgs fields Φ1,2,3 and an SU(2) gauge field Aµ.

Explicitly, this Lagrangian is

L = iψ /Dψ + Φa
1ψσ

aµzγxψ + Φa
2ψσ

aµxγyψ

+ Φa
3ψσ

aµy(γyi∂x + γxi∂y)ψ + V (Φ)
The microscopic symmetries of the square lattice dic-

tate the form of the Yukawa couplings and constrain

the form of V (Φ), leading to the mean-field phase di-
agram shown. Our conjectured trajectory of the J1/J2
model, with the U(1) and SU(2) phases being proxies for
Néel or VBS ordering, is shown in blue. Both of the two

critical theories are studied in a 1/Nf expansion, where

4Nf is the number of fermions.

SU(2) → Z2 transition: emergent subsystem symmetries and UV/IR mixing

This transition [9] is driven by the simultaneous condensation of the Φ1,2 fields. In a 1/Nf expansion, the physics

of this phase transition is controlled by emergent subsystem symmetries,

ψ → eiσ
aµzfa(x)ψ Φa

1 → Φa
1 + ∂xfa(x)

ψ → eiσ
aµxga(y)ψ Φa

2 → Φa
2 + ∂yga(y)

This symmetry is only respected by the Yukawa couplings and the bare fermion propagator, but other terms are

irrelevant to all orders in a 1/Nf expansion. This leads to divergences in momentum space at generic momenta

(neither UV nor IR), and necessitates the inclusion of “dangerously irrelevant” terms which break this subsystem

symmetry and cures the divergence. This leads to logarithm-squared corrections in quantities such as the fermion

self-energy,

k

ψ ψ̄
Σ(k) ≈ − 3

π2Nf

/k ln2(K|k|) ,

whereK is the coefficient of the dangerously irrelevant term. This leads to correlation functions that are neither
power-law nor exponential,

G(r) ∼ rβ exp
[
−η ln2(r)

]
with β a non-universal exponent and

ηVBS = 6
π2Nf

+ O
(
N−2
f

)
ηNéel =

12
π2Nf

+ O
(
N−2
f

)

U(1) → Z2 transition: anisotropic deconfined criticality

Néel, non-perturbative

Néel, perturbative

VBS, perturbative

The U(1) → Z2 transition [10] is described by the condensation of a single

complex Higgs field. At leading order in a 1/Nf expansion, there is a single

stable fixed point with an anisotropic fermion dispersion relation,

Lψ = iψ/∂ψ + Φcψσ
zµy(γxi∂y + γxi∂y)ψ ,

Φc = 0.46 + O
(
N−1
f

)
.

This anisotropy leads to non-trivial angular profiles in the Néel and VBS cor-

relation functions. The fixed point values of the anomalous Néel and VBS

correlation functions, as well as the dynamical critical exponent z, are

ηVBS = 0.06
Nf

+ O
(
N−2
f

)
ηNéel = −0.01

Nf
+ O

(
N−2
f

)
z = 1 + 0.225

Nf
+ O

(
N−2
f

)

Predictions of our critical theories

We present two possible critical theories describing instabilities of a gapless Z2 spin liquid to either Néel or

VBS order. Both yield predictions that may be tested in numerics, including

A violation of Lorentz invariance (z 6= 1)
For the SU(2) transition, violation of power-law scaling for observables - this may be reflected in a drift in
fitted critical exponents as a function of system size or irrelevant perturbations, reminiscent of a weakly

first-order transition

For the U(1) transition, a violation of SO(2) spatial rotation symmetry leading to non-trivial angular profiles
of the Néel and VBS correlation functions
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