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Hamiltonian and Phase Diagram

Zero-th order prediction of pc = 1/3

Joshi et al. 2020.
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Numerical Methods

.

QMC fails away from half-filling due to sign problem

Most numerical methods aren’t applicable due to non-locality,
disorder, doping, etc

But, we still have ED and Lanczos!

ED possible up to 12 sites, max Hilbert space dimension ∼ 35, 000

Lanczos extends this to 18 sites, max dimension ∼ 8, 000, 000

Distributed memory parallelization allows for efficient usage of
∼ 100 cores

Wietek and Läuchli 2018.
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Wietek and Läuchli 2018.



Numerical Methods

.

QMC fails away from half-filling due to sign problem

Most numerical methods aren’t applicable due to non-locality,
disorder, doping, etc

But, we still have ED and Lanczos!

ED possible up to 12 sites, max Hilbert space dimension ∼ 35, 000

Lanczos extends this to 18 sites, max dimension ∼ 8, 000, 000

Distributed memory parallelization allows for efficient usage of
∼ 100 cores

Wietek and Läuchli 2018.
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Spin glass order measured by EA order parameter q

q = lim
t→∞
〈Si(t) · Si(0)〉 6= 0 for spin glass

q

p
0 pc

Vanishing of SG order



SYK criticality measured by T → 0 entropy density

s0 = lim
T→0

lim
N→∞

S

N
6= 0 for SYK

s0

p
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SYK-like criticality
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Signatures of spin glass order
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t→∞
〈Si(t) · Si(0)〉 = q

→ S(ω) = qδ(ω) + . . .

δ(ω) smeared for finite N , SG contribution to χ′′(ω) = S(ω)− S(−ω)
well-defined
χ′′(ω) ∼ ω for FL
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χ′′(ω) at half-filling shows SG order

χ′′(ω) = χ′′inc(ω)︸ ︷︷ ︸
N−independent

+

∝q︷ ︸︸ ︷
χ′′low(ω) + χ′′high(ω)
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χ′′low(ω) asymptotes to a δ(ω) at low frequency

χ′′low(ω) = Aω exp

[
− ω2

2Γ2

]
Γ→ 0 in the thermodynamic limit, whereas

∫∞
0 χ′′low(ω) dω → q 6= 0.

Arrachea and Rozenberg 2002.
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χ′′(ω) for p > 0 has similar decomposition

χ′′(ω) = χ′′inc(ω) + χ′′low(ω) + χ′′high(ω)

χ′′inc(ω) = C exp

[
− ω2

2J2S(S + 1)

]



χ′′(ω) for p > 0 has similar decomposition
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Sum rule yields analytic prediction

∫ ∞
0

dω χ′′(ω) =
n

4

At q = 0, χ′′(ω) = χ′′inc(ω), which gives pc = 0.423.
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Large-N extrapolation confirms stability of SG order



Does vanishing of SG order correspond to onset of FL?

Consistent with χ′′(ω) ∼ ω, T > 0 results should give a clearer answer
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SYK criticality measured by T → 0 entropy density

s0 = lim
T→0
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6= 0 for SYK
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p
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SYK-like criticality



Entropy at T � 1 determined by dim(H)
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Large-N extrapolation of entropy density
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Large-N extrapolation of entropy density
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Non-zero s0 at p = 1/4 is extrapolation-dependent
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Finite-N analysis

.
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but difficult with finite doping

Alternate procedure - restricted average over only disorder
realizations with singlet ground state



Finite-N analysis

.

Large-N extrapolation important due to non-zero s0 for finite-N ,
but difficult with finite doping

Alternate procedure - restricted average over only disorder
realizations with singlet ground state



Finite-N analysis

.

Large-N extrapolation important due to non-zero s0 for finite-N ,
but difficult with finite doping

Alternate procedure - restricted average over only disorder
realizations with singlet ground state



Finite-N analysis

.

Large-N extrapolation important due to non-zero s0 for finite-N ,
but difficult with finite doping

Alternate procedure - restricted average over only disorder
realizations with singlet ground state



Possible interpretations

.

Non-zero extensive entropy detected around p = 1/4, vanishes by
p = 1/3

Spin glass order seems to survive up to p ≈ 0.423
0.423+0.25

2 = 0.3363

Separation could be due to finite-size effects

More interestingly, two phase transitions?
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Future directions

.

T > 0 χ′′(ω) should give clearer evidence of χ′′(ω) ∼ ω FL behavior

Finite U accessible with current code, more demanding due to
larger Hilbert space

Weaken the requirement of all-to-all interactions, sparse or
power-law decay
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