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Non-Hermiticity is experimentally realizable

Photonic lattices with controlled gain and loss

Pan et al., “Photonic zero mode in a non-Hermitian photonic lattice”



Non-Hermiticity is experimentally realizable

Open quantum systems (coherent dissipation from Lindblad equation)

Naghiloo et al., “Quantum state tomography across the exceptional point
in a single dissipative qubit”
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Degeneracies in PT -symmetric Hamiltonians

Degenerate or nearly-degenerate eigenvalues are not afforded the same
protection against complexity.
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Degenerate behavior constrained by η

If the unperturbed degenerate eigenstates have the same eigenvalue
under η, they will stay real

η−1Hη = H† implies H = H† in degenerate subspace

Heff stays Hermitian at all orders in perturbation theory

Eigenvalues will generally become complex when η is non-trivial in
degenerate subspace

Krein, “A generalization of some investigations of linear differential equations with
periodic coefficients”.
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Topological Order in Toric Code

Z

Z

Z Z X

X

X X
H = −

∑
c Ac −

∑
p Bp

Kitaev, “Fault-tolerant quantum computation by anyons”.
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If we assume:

V can be disordered

V can have support on the entire lattice
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Choosing η =
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i Xi for concreteness, we can have
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For any other system size, η is the product of stabilizers and logical string
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Pseudo-Hermitian perturbations sensitive to system size

For generic pseudo-Hermitian/PT -symmetric perturbations, the ground
state subspace of the toric code stays real if the system size is even in all
directions.



PT -symmetry protection does not require fine-tuning
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Hamiltonian is Hermitian

Not even-by-even lattice ⇒ PT -symmetry generically broken, can
create exceptional points

Geometric criterion related to covering of a lattice by stabilizers
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Overview of fracton models

Excitations with restricted
mobility

GSD scales exponentially in
system size

GSD not connected to any
individual symmetry,
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Does the GSD have a similar
PT -symmetry breaking
protection?

Pretko, Chen, and You, “Fracton phases of matter”.
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Even/odd classification is the same as toric code

∏
i Xi =



Other fracton models with PT -symmetry protection

Checkerboard model:

Covering always exists
Also generalizes to Majorana version, η =
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Vijay, Haah, and Fu, “Fracton topological order, generalized lattice gauge theory,
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Other fracton models with PT -symmetry protection

Checkerboard model:

Covering always exists

Also generalizes to Majorana version, η =
∏

i γi

Vijay, Haah, and Fu, “Fracton topological order, generalized lattice gauge theory,
and duality”.

Shirley, Slagle, and Chen, “Foliated fracton order in the checkerboard model”.



Other fracton models with PT -symmetry protection

Checkerboard model:

Covering always exists
Also generalizes to Majorana version, η =

∏
i γi

Vijay, Haah, and Fu, “Fracton topological order, generalized lattice gauge theory,
and duality”.

Shirley, Slagle, and Chen, “Foliated fracton order in the checkerboard model”.



Other fracton models with PT -symmetry protection

Quantum fractal spin liquids:

η always commutes with logical string operators

Yoshida, “Exotic topological order in fractal spin liquids”.



Other fracton models with PT -symmetry protection

Quantum fractal spin liquids:

η always commutes with logical string operators

Yoshida, “Exotic topological order in fractal spin liquids”.



Topological order in Haah’s cubic codes

ZI

ZZZI

IZ

IZ

ZI

II

IZ

17 stabilizer codes

Two qubits per site

Existence of a covering can be checked
by algebraic techniques

Haah, “Local stabilizer codes in three dimensions without string logical operators”.
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Dua et al., “Bifurcating entanglement-renormalization group flows of fracton
stabilizer models”.
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