Protection of parity-time symmetry in topological many-body systems: non-Hermitian toric code and fracton models

Henry Shackleton

Harvard University

July 1, 2020

[Topological Order in 2D \(Toric Code\)](#page-25-0)

[Non-Hermitian Quantum Mechanics](#page-3-0)

[Topological Order in 2D \(Toric Code\)](#page-25-0)

- [Generalization to Fracton models](#page-57-0)
- [Conclusions/Open Questions](#page-76-0)

Why Non-Hermiticity?

Non-Hermiticity in condensed matter systems gives rise to phenomena that is unique to non-Hermitian systems and experimentally realizable.

Non-Hermiticity yields unique behavior

Kawabata et al., ["Symmetry and Topology in Non-Hermitian Physics".](#page-0-0)

• Enriched topological classification

Kawabata et al., ["Symmetry and Topology in Non-Hermitian Physics".](#page-0-0)

- **•** Enriched topological classification
- Modified bulk-boundary correspondence

Kawabata et al., ["Symmetry and Topology in Non-Hermitian Physics".](#page-0-0)

- **•** Enriched topological classification
- Modified bulk-boundary correspondence
- **•** Exceptional points

Kawabata et al., ["Symmetry and Topology in Non-Hermitian Physics".](#page-0-0)

Non-Hermiticity is experimentally realizable

Photonic lattices with controlled gain and loss

Pan et al., ["Photonic zero mode in a non-Hermitian photonic lattice"](#page-0-0)

Non-Hermiticity is experimentally realizable

Open quantum systems (coherent dissipation from Lindblad equation)

Naghiloo et al., ["Quantum state tomography across the exceptional point](#page-0-0) [in a single dissipative qubit"](#page-0-0)

- \bullet $[H, \mathcal{PT}] = 0$
- **•** Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT} |\psi\rangle$

- \bullet $[H, \mathcal{PT}] = 0$
- **•** Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT} |\psi\rangle$

- \bullet $[H, \mathcal{PT}] = 0$
- **•** Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT} |\psi\rangle$

- \bullet $[H, \mathcal{PT}] = 0$
- **•** Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT} |\psi\rangle$

- \bullet $[H, \mathcal{PT}] = 0$
- **•** Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT} |\psi\rangle$

Degenerate or nearly-degenerate eigenvalues are not afforded the same protection against complexity.

Degenerate or nearly-degenerate eigenvalues are not afforded the same protection against complexity.

How do topological degeneracies behave in the presence of PT -symmetric perturbations?

Pseudo-Hermiticity generalizes PT symmetry

$$
\eta^{-1}H\eta=H^\dagger
$$

Pseudo-Hermiticity generalizes PT symmetry

$$
\eta^{-1}H\eta=H^{\dagger}
$$

$$
H = \underbrace{H_0}_{[H_0,\eta]=0} + \underbrace{iV}_{\{V,\eta\}=0}
$$

If the unperturbed degenerate eigenstates have the same eigenvalue under η , they will stay real

Krein, ["A generalization of some investigations of linear differential equations with](#page-0-0) [periodic coefficients".](#page-0-0)

- **If the unperturbed degenerate eigenstates have the same eigenvalue** under η , they will stay real
- $\eta^{-1}H\eta=H^\dagger$ implies $H=H^\dagger$ in degenerate subspace

Krein, ["A generalization of some investigations of linear differential equations with](#page-0-0) [periodic coefficients".](#page-0-0)

- **If the unperturbed degenerate eigenstates have the same eigenvalue** under η , they will stay real
- $\eta^{-1}H\eta=H^\dagger$ implies $H=H^\dagger$ in degenerate subspace
- \bullet H_{eff} stays Hermitian at all orders in perturbation theory

Krein, ["A generalization of some investigations of linear differential equations with](#page-0-0) [periodic coefficients".](#page-0-0)

- **If the unperturbed degenerate eigenstates have the same eigenvalue** under η , they will stay real
- $\eta^{-1}H\eta=H^\dagger$ implies $H=H^\dagger$ in degenerate subspace
- \bullet H_{eff} stays Hermitian at all orders in perturbation theory
- **Eigenvalues will generally become complex when** η **is non-trivial in** degenerate subspace

Krein, ["A generalization of some investigations of linear differential equations with](#page-0-0) [periodic coefficients".](#page-0-0)

[Non-Hermitian Quantum Mechanics](#page-3-0)

[Topological Order in 2D \(Toric Code\)](#page-25-0)

[Generalization to Fracton models](#page-57-0)

Topological Order in Toric Code

$$
H = -\sum_{c} A_{c} - \sum_{p} B_{p}
$$

Kitaev, ["Fault-tolerant quantum computation by anyons".](#page-0-0)

• For ground states, $A_c = B_p = +1$

- For ground states, $A_c = B_p = +1$
- On a torus, non-contractible loop operators lead to a fourfold GSD

Pseudo-Hermiticity requires $\{\eta, V\} = 0$.

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

 \bullet V can be disordered

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

- \bullet V can be disordered
- \bullet V can have support on the entire lattice

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

- *V* can be disordered
- \bullet V can have support on the entire lattice

then we have a unique choice.

The TC symmetries which admits generic pseudo-Hermitian perturbations are $\eta = \prod_i X_i$, $\prod_i Y_i$, $\prod_i Z_i$

What perturbations are permitted by η ?

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

Choosing $\eta = \prod_i X_i$ for concreteness, we can have i $\sum_i Z_i$
- Choosing $\eta = \prod_i X_i$ for concreteness, we can have
	- i $\sum_i Z_i$
	- i $\sum_i g_{x,i} Y_i + g_{z,i} Z_i$

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- i $\sum_i Z_i$
- i $\sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- i $\sum_{i < j < k} \bm{\mathcal{g}}_{ijk}$ Z $_i$ Z $_j$ Z $_k$

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- i $\sum_i Z_i$
- i $\sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- i $\sum_{i < j < k} \bm{\mathcal{g}}_{ijk}$ Z $_i$ Z $_j$ Z $_k$
- Essentially any perturbation with an odd number of Y and Z operators

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- i $\sum_i Z_i$
- i $\sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- i $\sum_{i < j < k} \bm{\mathcal{g}}_{ijk}$ Z $_i$ Z $_j$ Z $_k$
- Essentially any perturbation with an odd number of Y and Z operators

Hermitian perturbations are also allowed, provided they commute with η

Eigenvalues of η are sensitive to system size

Eigenvalues of η are sensitive to system size

On an even-by-even lattice, η is the product of stabilizers.

Eigenvalues of η are sensitive to system size

On an even-by-even lattice, η is the product of stabilizers.

For any other system size, η is the product of stabilizers and logical string operators.

For generic pseudo-Hermitian/ PT -symmetric perturbations, the ground state subspace of the toric code stays real if the system size is even in all directions.

PT -symmetry protection does not require fine-tuning

PT-symmetry in the Toric Code

• Even-by-even lattice \Rightarrow \mathcal{PT} -symmetry is preserved, effective Hamiltonian is Hermitian

- Even-by-even lattice \Rightarrow \mathcal{PT} -symmetry is preserved, effective Hamiltonian is Hermitian
- Not even-by-even lattice \Rightarrow \mathcal{PT} -symmetry generically broken, can create exceptional points
- Even-by-even lattice \Rightarrow \mathcal{PT} -symmetry is preserved, effective Hamiltonian is Hermitian
- Not even-by-even lattice \Rightarrow \mathcal{PT} -symmetry generically broken, can create exceptional points
- Geometric criterion related to covering of a lattice by stabilizers

[Non-Hermitian Quantum Mechanics](#page-3-0)

[Topological Order in 2D \(Toric Code\)](#page-25-0)

• Excitations with restricted mobility

Pretko, Chen, and You, ["Fracton phases of matter".](#page-0-0)

- **•** Excitations with restricted mobility
- GSD scales exponentially in system size

Pretko, Chen, and You, ["Fracton phases of matter".](#page-0-0)

- Excitations with restricted mobility
- GSD scales exponentially in system size
- GSD not connected to any individual symmetry, "topological"

Pretko, Chen, and You, ["Fracton phases of matter".](#page-0-0)

- **•** Excitations with restricted mobility
- GSD scales exponentially in system size
- GSD not connected to any individual symmetry, "topological"
- Does the GSD have a similar PT -symmetry breaking protection?

Pretko, Chen, and You, ["Fracton phases of matter".](#page-0-0)

Pseudo-Hermiticity approach generalizes from toric code

Pseudo-Hermiticity approach generalizes from toric code

$$
\bullet \ \eta = \prod_i X_i \,, \prod_i Y_i \,, \prod_i Z_i
$$

 $\eta = \prod_i X_i$, $\prod_i Y_i$, $\prod_i Z_i$

• Protection of PT symmetry \Leftrightarrow non-overlapping covering of stabilizers

Topological Order in the X-Cube model

Vijay, Haah, and Fu, ["Fracton topological order, generalized lattice gauge theory,](#page-0-0) [and duality".](#page-0-0)

Topological Order in the X-Cube model

Vijay, Haah, and Fu, ["Fracton topological order, generalized lattice gauge theory,](#page-0-0) [and duality".](#page-0-0)

Even/odd classification is the same as toric code

Checkerboard model:

Shirley, Slagle, and Chen, ["Foliated fracton order in the checkerboard model".](#page-0-0)

Vijay, Haah, and Fu, ["Fracton topological order, generalized lattice gauge theory,](#page-0-0) [and duality".](#page-0-0)

Checkerboard model:

Covering always exists

Shirley, Slagle, and Chen, ["Foliated fracton order in the checkerboard model".](#page-0-0)

Vijay, Haah, and Fu, ["Fracton topological order, generalized lattice gauge theory,](#page-0-0) [and duality".](#page-0-0)

Covering always exists Also generalizes to Majorana version, $\eta = \prod_i \gamma_i$

Shirley, Slagle, and Chen, ["Foliated fracton order in the checkerboard model".](#page-0-0)

Vijay, Haah, and Fu, ["Fracton topological order, generalized lattice gauge theory,](#page-0-0) [and duality".](#page-0-0)

Quantum fractal spin liquids:

Yoshida, ["Exotic topological order in fractal spin liquids".](#page-0-0)
Other fracton models with PT -symmetry protection

Quantum fractal spin liquids:

 η always commutes with logical string operators

Yoshida, ["Exotic topological order in fractal spin liquids".](#page-0-0)

Topological order in Haah's cubic codes

- 17 stabilizer codes
- Two qubits per site
- **•** Existence of a covering can be checked by algebraic techniques

Haah, ["Local stabilizer codes in three dimensions without string logical operators".](#page-0-0)

Existence of a stabilizer covering depends on system size

Dua et al., ["Bifurcating entanglement-renormalization group flows of fracton](#page-0-0) [stabilizer models".](#page-0-0)

Existence of a stabilizer covering depends on system size

Dua et al., ["Bifurcating entanglement-renormalization group flows of fracton](#page-0-0) [stabilizer models".](#page-0-0)

[Non-Hermitian Quantum Mechanics](#page-3-0)

[Topological Order in 2D \(Toric Code\)](#page-25-0)

[Generalization to Fracton models](#page-57-0)

Conclusions

 \bullet \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects

- \bullet \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break PT -symmetry
- \bullet \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break PT -symmetry
- Topological degeneracies can give PT -symmetry protection against generic perturbations
- \bullet \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break PT -symmetry
- Topological degeneracies can give PT -symmetry protection against generic perturbations
- \bullet PT-symmetry protection related to stabilizer coverings of lattice

Open Questions

• Interplay between exceptional points and topological order

- Interplay between exceptional points and topological order
- Hermitian applications?
- Interplay between exceptional points and topological order
- **•** Hermitian applications?
- Novel way of classifying fracton phases