Protection of parity-time symmetry in topological many-body systems: non-Hermitian toric code and fracton models

Henry Shackleton

Harvard University

July 1, 2020

1 Non-Hermitian Quantum Mechanics

2 Topological Order in 2D (Toric Code)

- 3 Generalization to Fracton models
- 4 Conclusions/Open Questions

1 Non-Hermitian Quantum Mechanics

Topological Order in 2D (Toric Code)

3 Generalization to Fracton models

4 Conclusions/Open Questions

Why Non-Hermiticity?

Non-Hermiticity in condensed matter systems gives rise to phenomena that is unique to non-Hermitian systems and experimentally realizable.

Non-Hermiticity yields unique behavior

• Enriched topological classification

- Enriched topological classification
- Modified bulk-boundary correspondence

- Enriched topological classification
- Modified bulk-boundary correspondence
- Exceptional points

Non-Hermiticity is experimentally realizable

Photonic lattices with controlled gain and loss

Pan et al., "Photonic zero mode in a non-Hermitian photonic lattice"

Non-Hermiticity is experimentally realizable

Open quantum systems (coherent dissipation from Lindblad equation)

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit"

- $[H, \mathcal{PT}] = 0$
- \bullet Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT}\left|\psi\right\rangle$

- $[H, \mathcal{PT}] = 0$
- \bullet Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT}\left|\psi\right\rangle$

- $[H, \mathcal{PT}] = 0$
- \bullet Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT}\left|\psi\right\rangle$

- $[H, \mathcal{PT}] = 0$
- Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT}|\psi\rangle$

- $[H, \mathcal{PT}] = 0$
- \bullet Eigenvalues come in complex conjugate pairs, $|\psi\rangle$ and $\mathcal{PT}\left|\psi\right\rangle$

Degenerate or nearly-degenerate eigenvalues are not afforded the same protection against complexity.

Degenerate or nearly-degenerate eigenvalues are not afforded the same protection against complexity.

How do topological degeneracies behave in the presence of $\mathcal{PT}\mbox{-symmetric}$ perturbations?

Pseudo-Hermiticity generalizes \mathcal{PT} symmetry

$$\eta^{-1}H\eta = H^{\dagger}$$

Pseudo-Hermiticity generalizes \mathcal{PT} symmetry

$$\eta^{-1}H\eta = H^{\dagger}$$

$$H = \underbrace{H_0}_{[H_0,\eta]=0} + \underbrace{iV}_{\{V,\eta\}=0}$$

 If the unperturbed degenerate eigenstates have the same eigenvalue under η, they will stay real

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

- If the unperturbed degenerate eigenstates have the same eigenvalue under η, they will stay real
- $\eta^{-1}H\eta = H^{\dagger}$ implies $H = H^{\dagger}$ in degenerate subspace

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

- If the unperturbed degenerate eigenstates have the same eigenvalue under η, they will stay real
- $\eta^{-1}H\eta = H^{\dagger}$ implies $H = H^{\dagger}$ in degenerate subspace
- H_{eff} stays Hermitian at all orders in perturbation theory

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

- If the unperturbed degenerate eigenstates have the same eigenvalue under η, they will stay real
- $\eta^{-1}H\eta = H^{\dagger}$ implies $H = H^{\dagger}$ in degenerate subspace
- H_{eff} stays Hermitian at all orders in perturbation theory
- Eigenvalues will generally become complex when η is non-trivial in degenerate subspace

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

Non-Hermitian Quantum Mechanics

2 Topological Order in 2D (Toric Code)

- 3 Generalization to Fracton models
- 4 Conclusions/Open Questions

Topological Order in Toric Code

$$H = -\sum_{c} A_{c} - \sum_{p} B_{p}$$

Kitaev, "Fault-tolerant quantum computation by anyons".

• For ground states, $A_c = B_p = +1$

- For ground states, $A_c = B_p = +1$
- On a torus, non-contractible loop operators lead to a fourfold GSD

Pseudo-Hermiticity requires $\{\eta, V\} = 0$.

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

• V can be disordered

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

- V can be disordered
- V can have support on the entire lattice

Pseudo-Hermiticity requires $\{\eta, V\} = 0$. If we assume:

- V can be disordered
- V can have support on the entire lattice

then we have a unique choice.

The TC symmetries which admits generic pseudo-Hermitian perturbations are $\eta = \prod_i X_i$, $\prod_i Y_i$, $\prod_i Z_i$

What perturbations are permitted by η ?

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

Choosing $\eta = \prod_i X_i$ for concreteness, we can have • $i \sum_i Z_i$
- Choosing $\eta = \prod_i X_i$ for concreteness, we can have
 - $i \sum_i Z_i$
 - $i \sum_i g_{x,i} Y_i + g_{z,i} Z_i$

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- $i \sum_i Z_i$
- $i \sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- $i \sum_{i < j < k} g_{ijk} Z_i Z_j Z_k$

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- $i \sum_i Z_i$
- $i \sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- $i \sum_{i < j < k} g_{ijk} Z_i Z_j Z_k$
- Essentially *any perturbation* with an odd number of Y and Z operators

Choosing $\eta = \prod_i X_i$ for concreteness, we can have

- $i \sum_i Z_i$
- $i \sum_i g_{x,i} Y_i + g_{z,i} Z_i$
- $i \sum_{i < j < k} g_{ijk} Z_i Z_j Z_k$
- Essentially *any perturbation* with an odd number of Y and Z operators

Hermitian perturbations are also allowed, provided they commute with $\boldsymbol{\eta}$

Eigenvalues of η are sensitive to system size

Eigenvalues of η are sensitive to system size

On an even-by-even lattice, η is the product of stabilizers.

Eigenvalues of η are sensitive to system size

On an even-by-even lattice, η is the product of stabilizers.

For any other system size, η is the product of stabilizers and logical string operators.

For generic pseudo-Hermitian/ \mathcal{PT} -symmetric perturbations, the ground state subspace of the toric code stays real *if the system size is even in all directions.*

\mathcal{PT} -symmetry protection does not require fine-tuning

$\mathcal{PT}\text{-symmetry}$ in the Toric Code

• Even-by-even lattice $\Rightarrow \mathcal{PT}\text{-symmetry}$ is preserved, effective Hamiltonian is Hermitian

- Even-by-even lattice $\Rightarrow \mathcal{PT}\text{-symmetry}$ is preserved, effective Hamiltonian is Hermitian
- Not even-by-even lattice $\Rightarrow \mathcal{PT}\text{-symmetry generically broken, can create exceptional points}$

- Even-by-even lattice $\Rightarrow \mathcal{PT}\text{-symmetry}$ is preserved, effective Hamiltonian is Hermitian
- Not even-by-even lattice $\Rightarrow \mathcal{PT}\text{-symmetry generically broken, can create exceptional points}$
- Geometric criterion related to covering of a lattice by stabilizers

1 Non-Hermitian Quantum Mechanics

Topological Order in 2D (Toric Code)

• Excitations with restricted mobility

Pretko, Chen, and You, "Fracton phases of matter".

- Excitations with restricted mobility
- GSD scales exponentially in system size

Pretko, Chen, and You, "Fracton phases of matter".

- Excitations with restricted mobility
- GSD scales exponentially in system size
- GSD not connected to any individual symmetry, "topological"

Pretko, Chen, and You, "Fracton phases of matter".

- Excitations with restricted mobility
- GSD scales exponentially in system size
- GSD not connected to any individual symmetry, "topological"
- Does the GSD have a similar \mathcal{PT} -symmetry breaking protection?

Pretko, Chen, and You, "Fracton phases of matter".

Pseudo-Hermiticity approach generalizes from toric code

Pseudo-Hermiticity approach generalizes from toric code

•
$$\eta = \prod_i X_i, \prod_i Y_i, \prod_i Z_i$$

• $\eta = \prod_i X_i, \prod_i Y_i, \prod_i Z_i$

• Protection of \mathcal{PT} symmetry \Leftrightarrow non-overlapping covering of stabilizers

Topological Order in the X-Cube model

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Topological Order in the X-Cube model

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Even/odd classification is the same as toric code

Other fracton models with \mathcal{PT} -symmetry protection

Checkerboard model:

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Shirley, Slagle, and Chen, "Foliated fracton order in the checkerboard model".

Other fracton models with \mathcal{PT} -symmetry protection

Checkerboard model:

Covering always exists

Shirley, Slagle, and Chen, "Foliated fracton order in the checkerboard model".

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Other fracton models with $\mathcal{PT}\text{-symmetry}$ protection

Covering *always* exists Also generalizes to Majorana version, $\eta = \prod_i \gamma_i$

Shirley, Slagle, and Chen, "Foliated fracton order in the checkerboard model".

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Other fracton models with \mathcal{PT} -symmetry protection

Quantum fractal spin liquids:

Yoshida, "Exotic topological order in fractal spin liquids".
Other fracton models with $\mathcal{PT}\text{-symmetry}$ protection

Quantum fractal spin liquids:

 $\eta \ \textit{always}$ commutes with logical string operators

Yoshida, "Exotic topological order in fractal spin liquids".

Topological order in Haah's cubic codes

- 17 stabilizer codes
- Two qubits per site
- Existence of a covering can be checked by algebraic techniques

Haah, "Local stabilizer codes in three dimensions without string logical operators".

Existence of a stabilizer covering depends on system size

		CC_2		CC_5		CC_{11}		
		CC_3		CC_8		CC_{12}		
System		CC_6		CC_{10}		CC_{14}		
Size	CC_1	CC_9	CC_4	CC_{16}	CC_7	CC_{15}	CC_{13}	CC_{17}
$E \times E \times E$								
$\mathbf{E} \times \mathbf{E} \times \mathbf{e}$	1	1	1	1	1	1	1	1
$e \times E \times E$								
$o \times E \times E$								
$\mathbf{E}\times\mathbf{e}\times\mathbf{E}$								
$\mathbf{E}\times\mathbf{e}\times\mathbf{e}$	1	1	1	~	1	~	1	x
$e \times e \times E$								
$e \times E \times E$								
$\mathbf{E}\times\mathbf{o}\times\mathbf{E}$								
$e \times e \times e$	1	1	~	~	1	~	x	×
$\mathbf{E} \times \mathbf{E} \times \mathbf{o}$	1	1	1	1	1	×	X	1
$e \times o \times E$								
$\mathbf{E}\times\mathbf{o}\times\mathbf{e}$								
$\mathbf{e}\times\mathbf{o}\times\mathbf{e}$	X	1	1	~	1	~	x	x
$e \times E \times o$								
$\mathbf{E}\times\mathbf{e}\times\mathbf{o}$								
$e \times e \times o$								
$e \times o \times o$								
$E \times o \times o$	×	~	×	~	1	×	×	×
$o \times e \times E$								
$o \times E \times e$								
$o \times e \times e$	X	X	1	~	1	~	x	×
$o \times o \times E$								
$o \times o \times e$	X	X	×	×	1	~	x	x
$o \times E \times o$								
$o \times e \times o$								
$o \times o \times o$	X	×	×	×	×	×	×	×

Dua et al., "Bifurcating entanglement-renormalization group flows of fracton stabilizer models".

Existence of a stabilizer covering depends on system size

		CC		CC_5		CC_{11}		
		CC_3		CC_8		CC_{12}		
System		CC_6		CC_{10}		CC_{14}		
Size	CC_1	CC_9	CC_4	CC_{16}	CC_7	CC_{15}	CC_{13}	CC_{17}
$E \times E \times E$								
$\mathbf{E}\times\mathbf{E}\times\mathbf{e}$	1	1	1	1	1	1	1	1
$\mathbf{e}\times\mathbf{E}\times\mathbf{E}$								
$o\timesE\timesE$								
$\mathbf{E} \times \mathbf{e} \times \mathbf{E}$								
$\mathbf{E}\times\mathbf{e}\times\mathbf{e}$	1	1	1	~	1	~	1	×
$\mathbf{e}\times\mathbf{e}\times\mathbf{E}$								
$\mathbf{e} \times \mathbf{E} \times \mathbf{E}$								
$\mathbf{E}\times\mathbf{o}\times\mathbf{E}$								
$\mathbf{e}\times\mathbf{e}\times\mathbf{e}$	1	1	1	~	1	1	x	×
$\mathbf{E}\times\mathbf{E}\times\mathbf{o}$	1	1	1	~	~	×	X	~
$e \times o \times E$								
$\mathbf{E}\times\mathbf{o}\times\mathbf{e}$								
$\mathbf{e}\times\mathbf{o}\times\mathbf{e}$	X	1	~	1	1	1	x	×
$\mathbf{e}\times\mathbf{E}\times\mathbf{o}$								
$E \times e \times o$								
$e \times e \times o$								
$e \times o \times o$								
$E \times o \times o$	X	1	×	~	1	×	x	×
$o \times e \times E$								
$o \times E \times e$								
$o \times e \times e$	×	×	~	~	1	~	x	×
$o \times o \times E$								
$o \times o \times e$	×	×	×	x	1	~	x	×
$o \times E \times o$								
$o \times e \times o$								
$o \times o \times o$	X	×	×	×	×	×	×	×

Dua et al., "Bifurcating entanglement-renormalization group flows of fracton stabilizer models".

1 Non-Hermitian Quantum Mechanics

Topological Order in 2D (Toric Code)

3 Generalization to Fracton models

Conclusions

• \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects

- \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break $\mathcal{PT}\text{-symmetry}$

- \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break $\mathcal{PT}\text{-symmetry}$
- \bullet Topological degeneracies can give $\mathcal{PT}\text{-symmetry}$ protection against generic perturbations

- \mathcal{PT} symmetry/pseudo-Hermiticity admits controlled non-Hermitian effects
- Degeneracies/near-degeneracies can spontaneously break $\mathcal{PT}\text{-symmetry}$
- Topological degeneracies can give $\mathcal{PT}\text{-symmetry}$ protection against generic perturbations
- \mathcal{PT} -symmetry protection related to stabilizer coverings of lattice

Open Questions

• Interplay between exceptional points and topological order

- Interplay between exceptional points and topological order
- Hermitian applications?

- Interplay between exceptional points and topological order
- Hermitian applications?
- Novel way of classifying fracton phases