Exactly solvable dissipative spin liquids

Henry Shackleton June 11, 2023

Harvard University

Open quantum systems = non-equilibrium phases?

Open quantum systems = non-equilibrium phases?

Open quantum systems = non-equilibrium phases?

Emerging ideas: engineering of environmental couplings lead to richer physics

Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}[\rho] = -i[H,\rho] + \sum_{i} \left(L_i \rho L_i^{\dagger} - \frac{1}{2} \left\{ L_i^{\dagger} L_i, \rho \right\} \right)$$

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$rac{\mathrm{d}
ho}{\mathrm{d}t} = \mathcal{L}[
ho] = -i[H,
ho] + \sum_{i} \left(L_i
ho L_i^\dagger - rac{1}{2} \left\{ L_i^\dagger L_i,
ho
ight\}
ight)$$

Treat \mathcal{L} as Hamiltonian acting on

"doubled" Hilbert space of operators, $\mathcal{O} = \sum_{ij} \mathcal{O}_{ij} |\psi_i\rangle \langle\psi_j| \Rightarrow \sum_{ij} \mathcal{O}_{ij} |\psi_i\rangle \otimes |\psi_j\rangle$ and $\langle \mathcal{O}_1 | \mathcal{O}_2 \rangle \sim \operatorname{Tr} \mathcal{O}_1^{\dagger} \mathcal{O}_2.$

$$i\mathcal{L} = H_{\text{eff}} \otimes \mathbb{1} - \mathbb{1} \otimes H_{\text{eff}}^{\dagger} + i\gamma \sum_{i} L_{i} \otimes L_{i}^{\dagger}$$
$$H_{\text{eff}} \equiv H - \frac{i\gamma}{2} \sum_{i} L_{i}^{\dagger} L_{i}$$

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}[\rho] = -i[H,\rho] + \sum_{i} \left(L_{i}\rho L_{i}^{\dagger} - \frac{1}{2} \left\{ L_{i}^{\dagger}L_{i},\rho \right\} \right)$$

Treat \mathcal{L} as Hamiltonian acting on

"doubled" Hilbert space of operators, $\mathcal{O} = \sum_{ij} \mathcal{O}_{ij} |\psi_i\rangle \langle\psi_j| \Rightarrow \sum_{ij} \mathcal{O}_{ij} |\psi_i\rangle \otimes |\psi_j\rangle$ and $\langle \mathcal{O}_1 | \mathcal{O}_2 \rangle \sim \operatorname{Tr} \mathcal{O}_1^{\dagger} \mathcal{O}_2.$

$$\begin{split} i\mathcal{L} &= H_{\text{eff}} \otimes \mathbb{1} - \mathbb{1} \otimes H_{\text{eff}}^{\dagger} + i\gamma \sum_{i} L_{i} \otimes L_{i}^{\dagger} \\ H_{\text{eff}} &\equiv H - \frac{i\gamma}{2} \sum_{i} L_{i}^{\dagger} L_{i} \end{split}$$

Part 1: Define our model and demonstrate exact solvability Part 2: Interpret meaning of ground states, excited states, etc

Exact solvability in the Kitaev honeycomb model: a review

$$\begin{split} H &= J_x \sum_{\text{x-links}} \sigma_j^x \sigma_k^x + J_y \sum_{\text{y-links}} \sigma_j^y \sigma_k^y \\ &+ J_z \sum_{\text{z-links}} \sigma_j^z \sigma_k^z \\ &\sigma_j^\alpha = i c_j b_j^\alpha \quad c_j \prod b_j^\alpha = 1 \end{split}$$

 α

Kitaev 2006; Wu, Arovas, and Hung 2009.

Exact solvability in the Kitaev honeycomb model: a review

$$\begin{split} H &= J_x \sum_{\text{x-links}} \sigma_j^x \sigma_k^x + J_y \sum_{\text{y-links}} \sigma_j^y \sigma_k^y \\ &+ J_z \sum_{\text{z-links}} \sigma_j^z \sigma_k^z \\ &\sigma_j^\alpha = i c_j b_j^\alpha \quad c_j \prod b_j^\alpha = 1 \end{split}$$

 α

Kitaev 2006; Wu, Arovas, and Hung 2009.

Exact solvability in the Kitaev honeycomb model: a review

• General construction - n anti-commuting matrices on a lattice of coordination number n

• Accomplished by
$$\Gamma$$
 matrices, $\left\{\Gamma^a, \Gamma^b\right\} = 2\delta_{ab}$

Kitaev 2006; Wu, Arovas, and Hung 2009.

Define Kitaev-like model on bilayer square lattice, coordination number of 5 requires Γ^a , a = 1, ..., 5 (microscopic DOFs are spin-3/2 or spin/orbital)

$$H = \sum_{j} \left[J_x \Gamma_j^1 \Gamma_{j+\widehat{x}}^2 + J_y \Gamma_j^3 \Gamma_{j+\widehat{y}}^4 \right]$$

Conserved quantities: flux operators W_i , bond operators $V_{i\alpha}$

Define Kitaev-like model on bilayer square lattice, coordination number of 5 requires Γ^a , $a = 1, \ldots, 5$ (microscopic DOFs are spin-3/2 or spin/orbital)

Add quantum jump operator $L_j = \Gamma_j^5$, representation in doubled Hilbert space is

$$i\mathcal{L} = H[\Gamma_R] - H[\Gamma_L] + i\gamma \sum_j \Gamma_{jL}^5 \Gamma_{jR}^5 - i\gamma N$$

Conserved fluxes W_{iR} , W_{iL} along with conserved superoperators

$$U_{i\alpha}[\rho] = V_{i\alpha}\rho V_{i\alpha}$$

Yao, Zhang, and Kivelson 2009.

Exact solvability through Majorana decomposition

Use mapping $\Gamma^a_{jR} = i d_{jR} c^a_{jR}$ and likewise for Γ^a_{jL}

$$i\mathcal{L} = \sum_{\ell=L,R} \sum_{\substack{i,j \\ i \neq i}} \frac{s_{\ell}}{s_{\ell}} \left[J_x \widehat{w_{i,x,\ell}} i d_{i,\ell} d_{i+\hat{x},\ell} + J_y \widehat{w_{i,y,\ell}} i d_{i,\ell} d_{i+\hat{y},\ell} \right] - \gamma \sum_{i} \widehat{v_i} d_{i,R} d_{i,L} - i\gamma N$$

$$s_R = 1, s_L = -1$$

$$c_{i\ell}^a \text{ bilinears, conserved quantities } \pm 1$$

Lindblad equation can be expressed as Majorana fermions coupled to static \mathbb{Z}_2 gauge fields - free fermions in each gauge sector.

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} |\rho_{ss}\rangle = 0$

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} |\rho_{ss}\rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool!

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} |\rho_{ss}\rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool! Excitations define *Liouvillian gap* λ , transient behavior over timescales $t \sim \frac{1}{\lambda}$

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} |\rho_{ss}\rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool! Excitations define *Liouvillian gap* λ , transient behavior over timescales $t \sim \frac{1}{\lambda}$

Particle-based characterization

Different "particles" correspond to equilibration of different observables

$$|\rho_{ss}\rangle + |a\rangle \xrightarrow[t \sim \lambda_a^{-1}]{} |\rho_{ss}\rangle$$

What are the steady-state solutions?

Goal: find flux configurations that contain steady-state solutions.

Goal: find flux configurations that contain steady-state solutions.

Lieb's theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by tracepreservation of the Lindbladian. $\langle \mathbb{1} | \mathcal{O} \rangle \neq 0$ means that $| \mathbb{1} \rangle$ and $| \mathcal{O} \rangle$ must be in the same symmetry sector

Goal: find flux configurations that contain steady-state solutions.

Lieb's theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by tracepreservation of the Lindbladian. $\langle \mathbb{1} | \mathcal{O} \rangle \neq 0$ means that $| \mathbb{1} \rangle$ and $| \mathcal{O} \rangle$ must be in the same symmetry sector

Interlayer flux constraint

$$U_{i\alpha}[\mathbb{1}] = V_{i\alpha}\mathbb{1}V_{i\alpha} = \mathbb{1}$$

Enforces $U_{i\alpha} = 1$

Intralayer flux constraint

 $W_{iR}[1] = W_{iL}[1]$

Enforces $W_{iR} = W_{iL} \equiv W_i$

Complex fermion representation reveals steady-state solutions

$$\mathcal{L} = J \sum_{j} \left[\widehat{w}_{j,j+\widehat{x}} f_{j}^{\dagger} f_{j+\widehat{x}} + \widehat{w}_{j,j+\widehat{y}} f_{j}^{\dagger} f_{j+\widehat{y}} + \text{ h.c} \right]$$
$$+ 2i\gamma \sum_{j} f_{j}^{\dagger} f_{j}$$

Complex fermion representation reveals steady-state solutions

$$i\mathcal{L} = J \sum_{j} \left[\widehat{w}_{j,j+\widehat{x}} f_{j}^{\dagger} f_{j+\widehat{x}} + \widehat{w}_{j,j+\widehat{y}} f_{j}^{\dagger} f_{j+\widehat{y}} + \text{ h.c.} \right]$$
$$+ 2i\gamma \sum_{j} f_{j}^{\dagger} f_{j}$$

- Steady-state solution given by f_j vacuum
- Symmetry analysis implies only non-zero expectation values are W_i operators
- Fermion excitations cost energy 2γ, gauge-invariant 4γ excitation defines "fermion Liouvillian gap"

Analysis of "interlayer" gauge excitations

i

Flip intralayer gauge field at site k, Lindblad equation is now

$$\mathcal{L} = J \sum_{\langle jk \rangle} (f_j^{\dagger} f_k + \text{h.c}) + 2i\gamma \sum_{j \neq k} f_j^{\dagger} f_j + 2i\gamma(1 - f_k^{\dagger} f_k)$$

 $\gamma \to \infty, \text{ steady-state solution}$
 $n_k = 1, n_{j \neq k} = 0$

Quantum Zeno effect - for strong dissipation, steady-state solutions emerge with definite Γ_k^5 eigenvalue

Analysis of "interlayer" gauge excitations

Flip intralayer gauge field at site k, Lindblad equation is now

$$i\mathcal{L} = J \sum_{\langle jk \rangle} (f_j^{\dagger} f_k + \text{h.c}) + 2i\gamma \sum_{j \neq k} f_j^{\dagger} f_j + 2i\gamma(1 - f_k^{\dagger} f_k)$$

$$\gamma \to \infty, \text{ steady-state solution}$$

$$n_k = 1, n_{j \neq k} = 0$$
Quantum Zeno effect - for strong dissipation, steady-state solutions emerge with definite Γ_k^5 eigenvalue

solutions

Analysis of "intralayer" gauge excitations

$$i\mathcal{L} = J \sum_{\langle jk \rangle \neq \langle j'k' \rangle} (f_j^{\dagger} f_k + \text{ h.c}) + J(f_{j'}^{\dagger} f_{k'}^{\dagger} + \text{ h.c}) + 2i\gamma \sum_j f_j^{\dagger} f_j$$

- $W_{iR} \neq W_{iL}$ induces pairing terms, symmetry sector corresponds to $\Gamma^{1,2,3,4}$ operators
- Gauge invariance prevents Zeno effect as $\gamma \to \infty$

What about topological order?

Four degenerate steady-states -"topological order" in doubled Hilbert space, but quantum superpositions are classical in our original Hilbert space

General picture: gauge sectors define distinct equilibration timescasles

