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Open quantum systems = non-equilibrium phases?

Topology by dissipation in atomic quantum wires
Sebastian Diehl'2*, Enrique Rico'?, Mikhail A. Baranov'?? and Peter Zoller'?
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Emerging ideas: engineering of en-
vironmental couplings lead to richer
physics




Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions
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Part 1: Define our model and Part 2: Interpret meaning of
demonstrate exact solvability ground states, excited states, etc




Exact solvability in the Kitaev honeycomb model: a review
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e General construction - n anti-commuting matrices on a lattice of coordination

number n

e Accomplished by I' matrices, {F“, Fb} = 204

Kitaev 2006; Wu, Arovas, and Hung 2009.



Exactly solvable bilayer models lift to Lindbladian picture

Define Kitaev-like model on bilayer square lattice, coordination number of 5
requires 'Y, a = 1,...,5 (microscopic DOFs are spin-3/2 or spin/orbital)

[ * ¢ ®
172 34
H =Y [ Ll 5+ JyLi0h ] W,
J r
F2
Conserved quantities: flux operators W; \ T ¢ ?
bond operators V;, 3
Via
o 3 > ®

Yao, Zhang, and Kivelson 2009.



Exactly solvable bilayer models lift to Lindbladian picture

Define Kitaev-like model on bilayer square lattice, coordination number of 5

requires 'Y, a = 1,...,5 (microscopic DOFs are spin-3/2 or spin/orbital)

Add quantum jump operator L; = F?,
representation in doubled Hilbert space is

i =H[Tg] — HTL] + iy Y T35z — 7N
J
Conserved fluxes W;r,W;r along with

conserved superoperators

U; [p] = ‘/iap‘/;a

Yao, Zhang, and Kivelson 2009.



Exact solvability through Majorana decomposition

Use mapping I'jp = id;jrcjg and likewise for I},

iL= 3> selh wzxeldzéderxe-f—J Wi i o] — v o Bildirdip — YN
{=L,R z/ - - g
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sp=1,s;, =—1 c;-‘@ bilinears, conserved quantities +1

Lindblad equation can be expressed as Ma-
jorana fermions coupled to static Zo gauge
fields - free fermions in each gauge sector.
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What is the physical interpretation of these solutions?

For t — oo, initial states asymptote to
steady-state solutions pss, where

L|pss) =0

Symmetry-based characterization

(Alp) = 0 unless A and p are in the
same symmetry sector. Extensive
number of flux operators makes this

a powerful tool!

Excitations define Liouvillian gap A,

transient behavior over timescales t ~ X

Particle-based characterization

Different “particles” correspond to
equilibration of different observ-

ables

‘pss> + ‘a> ﬁ ‘pss>
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What are the steady-state solutions?

Goal: find flux configurations that contain steady-state solutions.

Lieb’s theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by trace-
preservation of the Lindbladian. (1|O) # 0 means that |1) and |O) must be

in the same symmetry sector

Interlayer flux constraint Intralayer flux constraint

Uia[]l] = V;oc]lv;a =1 WZ []].] = Wz []l]
Enforces U;, = 1 Enforces W;p = W;r, = W;




Complex fermion representation reveals steady-state solutions
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Complex fermion representation reveals steady-state solutions
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e Steady-state solution given by f; vacuum
e Symmetry analysis implies only non-zero
expectation values are W; operators

e Fermion excitations cost energy 27,
gauge-invariant 4~ excitation defines

“fermion Liouvillian gap”



Analysis of “interlayer” gauge excitations

Flip intralayer gauge field at site k, Lindblad equation is now
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Quantum Zeno effect - for strong
dissipation, steady-state solutions
emerge with definite I‘Z eigenvalue
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Analysis of “intralayer” gauge excitations

iL=J S (Mt ho)+ Il + h.c)+2i'vZf§fj

(k)£ J
5
Interlayer gauge gap
L Fermion gap
Intralayer gap
alk / \ ) o W;r # W, induces pairing terms,
o / =] symmetry sector corresponds to
3 L
[G] S B — T~
(7 1234 operators
// e Gauge invariance prevents Zeno
/ effect as v — oo
o LL ! ! ! ! !
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What about topological order?

Four degenerate steady-states -

“topological order” in doubled
Hilbert space, but quantum super-
positions are classical in our origi-

nal Hilbert space




General picture: gauge sectors define distinct equilibration timescasles
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