Exactly solvable dissipative spin liquids

Henry Shackleton

June 11, 2023

Harvard University

Open quantum systems $=$ non-equilibrium phases?

Open quantum systems $=$ non-equilibrium phases?

Open quantum systems $=$ non-equilibrium phases?

Emerging ideas: engineering of environmental couplings lead to richer physics

Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$
\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}[\rho] = -i[H,\rho] + \sum_{i} \left(L_i \rho L_i^{\dagger} - \frac{1}{2} \left\{ L_i^{\dagger} L_i, \rho \right\} \right)
$$

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$
\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}[\rho] = -i[H,\rho] + \sum_{i} \left(L_i \rho L_i^{\dagger} - \frac{1}{2} \left\{ L_i^{\dagger} L_i, \rho \right\} \right)
$$

Treat $\mathcal L$ as Hamiltonian acting on

"doubled" Hilbert space of operators, $\mathcal{O} = \sum$ ij $\mathcal{O}_{ij} |\psi_i\rangle \langle \psi_j| \Rightarrow \sum$ ij $\mathcal{O}_{ij} \ket{\psi_i} \otimes \ket{\psi_j}$ and $\langle \mathcal{O}_1 | \mathcal{O}_2 \rangle \sim \text{Tr} \, \mathcal{O}_1^{\dagger} \mathcal{O}_2.$

$$
i\mathcal{L} = H_{\text{eff}} \otimes \mathbb{1} - \mathbb{1} \otimes H_{\text{eff}}^{\dagger} + i\gamma \sum_{i} L_{i} \otimes L_{i}^{\dagger}
$$

$$
H_{\text{eff}} \equiv H - \frac{i\gamma}{2} \sum_{i} L_{i}^{\dagger} L_{i}
$$

Lindblad equation - general Markovian evolution satisfying CPTP conditions

$$
\frac{\mathrm{d}\rho}{\mathrm{d}t} = \mathcal{L}[\rho] = -i[H,\rho] + \sum_{i} \left(L_i \rho L_i^{\dagger} - \frac{1}{2} \left\{ L_i^{\dagger} L_i, \rho \right\} \right)
$$

Treat $\mathcal L$ as Hamiltonian acting on

"doubled" Hilbert space of operators, $\mathcal{O} = \sum$ ij $\mathcal{O}_{ij} |\psi_i\rangle \langle \psi_j| \Rightarrow \sum$ ij $\mathcal{O}_{ij} \ket{\psi_i} \otimes \ket{\psi_j}$ and $\langle \mathcal{O}_1 | \mathcal{O}_2 \rangle \sim \text{Tr} \, \mathcal{O}_1^{\dagger} \mathcal{O}_2.$

$$
i\mathcal{L} = H_{\text{eff}} \otimes 1 - 1 \otimes H_{\text{eff}}^{\dagger} + i\gamma \sum_{i} L_{i} \otimes L_{i}^{\dagger}
$$

$$
H_{\text{eff}} \equiv H - \frac{i\gamma}{2} \sum_{i} L_{i}^{\dagger} L_{i}
$$

Part 1: Define our model and demonstrate exact solvability

Part 2: Interpret meaning of ground states, excited states, etc

Exact solvability in the Kitaev honeycomb model: a review

k

$$
H = J_x \sum_{\text{x-links}} \sigma_j^x \sigma_k^x + J_y \sum_{\text{y-links}} \sigma_j^y \sigma_k^y
$$

$$
+ J_z \sum_{\text{z-links}} \sigma_j^z \sigma_k^z
$$

$$
\sigma_j^{\alpha} = ic_j b_j^{\alpha} \quad c_j \prod_{j} b_j^{\alpha} = 1
$$

α

 \mathbf{x}

Kitaev [2006;](#page-0-0) Wu, Arovas, and Hung [2009.](#page-0-0)

Exact solvability in the Kitaev honeycomb model: a review

 \hat{y}

$$
H = J_x \sum_{\text{x-links}} \sigma_j^x \sigma_k^x + J_y \sum_{\text{y-links}} \sigma_j^y \sigma_k^y
$$

$$
+ J_z \sum_{\text{z-links}} \sigma_j^z \sigma_k^z
$$

$$
\sigma_j^{\alpha} = ic_j b_j^{\alpha} \quad c_j \prod b_j^{\alpha} = 1
$$

α

Kitaev [2006;](#page-0-0) Wu, Arovas, and Hung [2009.](#page-0-0)

Exact solvability in the Kitaev honeycomb model: a review

• General construction - n anti-commuting matrices on a lattice of coordination number n

• Accordingly
$$
\Gamma
$$
 matrices, $\{\Gamma^a, \Gamma^b\} = 2\delta_{ab}$

Kitaev [2006;](#page-0-0) Wu, Arovas, and Hung [2009.](#page-0-0)

Define Kitaev-like model on bilayer square lattice, coordination number of 5 requires Γ^a , $a = 1, ..., 5$ (microscopic DOFs are spin-3/2 or spin/orbital)

$$
H = \sum_{j} \left[J_x \Gamma_j^1 \Gamma_{j+\widehat{x}}^2 + J_y \Gamma_j^3 \Gamma_{j+\widehat{y}}^4 \right]
$$

Conserved quantities: flux operators W_i , bond operators $V_{i\alpha}$

Yao, Zhang, and Kivelson [2009.](#page-0-0)

Define Kitaev-like model on bilayer square lattice, coordination number of 5 requires Γ^a , $a = 1, ..., 5$ (microscopic DOFs are spin-3/2 or spin/orbital)

Add quantum jump operator $L_j = \Gamma_j^5$, representation in doubled Hilbert space is

$$
i\mathcal{L} = H[\Gamma_R] - H[\Gamma_L] + i\gamma \sum_j \Gamma_{jL}^5 \Gamma_{jR}^5 - i\gamma N
$$

Conserved fluxes W_{iR} , W_{iL} along with conserved superoperators

$$
U_{i\alpha}[\rho] = V_{i\alpha}\rho V_{i\alpha}
$$

Yao, Zhang, and Kivelson [2009.](#page-0-0)

Exact solvability through Majorana decomposition

Use mapping $\Gamma_{jR}^a = id_{jR} c_{jR}^a$ and likewise for Γ_{jL}^a

$$
i\mathcal{L} = \sum_{\ell=L,R} \sum_{i,\ell} s_{\ell} \left[J_x \widehat{w}_{i,x,\ell} \left[id_{i,\ell} d_{i+\widehat{x},\ell} + J_y \widehat{w}_{i,y,\ell} \left[id_{i,\ell} d_{i+\widehat{y},\ell} \right] - \gamma \sum_{i} \widehat{v}_{i} d_{i,R} d_{i,L} - i\gamma N \right] \right]
$$

$$
s_R = 1, s_L = -1 \qquad c_{j\ell}^{a}
$$
 bilinears, conserved quantities ± 1

Lindblad equation can be expressed as Maiorana fermions coupled to static \mathbb{Z}_2 gauge fields - free fermions in each gauge sector.

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} |\rho_{ss}\rangle = 0$

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} | \rho_{ss} \rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool!

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} | \rho_{ss} \rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool!

Excitations define $Liouvillian$ gap $\lambda,$ transient behavior over timescales $t \sim \frac{1}{\lambda}$ λ

For $t \to \infty$, initial states asymptote to steady-state solutions ρ_{ss} , where $\mathcal{L} | \rho_{ss} \rangle = 0$

Symmetry-based characterization

 $\langle A|\rho\rangle = 0$ unless A and ρ are in the same symmetry sector. Extensive number of flux operators makes this a powerful tool!

Excitations define *Liouvillian gap* λ , transient behavior over timescales $t \sim \frac{1}{\lambda}$ λ

Particle-based characterization

Different "particles" correspond to equilibration of different observables

$$
|\rho_{ss}\rangle+|a\rangle\xrightarrow[t\sim\lambda_a^{-1}}|\rho_{ss}\rangle
$$

What are the steady-state solutions?

Goal: find flux configurations that contain steady-state solutions.

Goal: find flux configurations that contain steady-state solutions.

Lieb's theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by tracepreservation of the Lindbladian. $\langle 1|\mathcal{O}\rangle \neq 0$ means that $|1\rangle$ and $|\mathcal{O}\rangle$ must be in the same symmetry sector

Goal: find flux configurations that contain steady-state solutions.

Lieb's theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by tracepreservation of the Lindbladian. $\langle 1|\mathcal{O}\rangle \neq 0$ means that $|1\rangle$ and $|\mathcal{O}\rangle$ must be in the same symmetry sector

Interlayer flux constraint

$$
U_{i\alpha}[\mathbb{1}] = V_{i\alpha} \mathbb{1} V_{i\alpha} = \mathbb{1}
$$

Enforces $U_{i\alpha} = 1$

Intralayer flux constraint

 $W_{iR}[1] = W_{iL}[1]$

Enforces $W_{iR} = W_{iL} \equiv W_i$

Complex fermion representation reveals steady-state solutions

$$
i\mathcal{L} = J \sum_{j} \left[\widehat{w}_{j,j+\widehat{x}} f_{j}^{\dagger} f_{j+\widehat{x}} + \widehat{w}_{j,j+\widehat{y}} f_{j}^{\dagger} f_{j+\widehat{y}} + \text{h.c} \right] + 2i\gamma \sum_{j} f_{j}^{\dagger} f_{j}
$$

Complex fermion representation reveals steady-state solutions

$$
i\mathcal{L} = J \sum_{j} \left[\widehat{w}_{j,j+\widehat{x}} f_{j}^{\dagger} f_{j+\widehat{x}} + \widehat{w}_{j,j+\widehat{y}} f_{j}^{\dagger} f_{j+\widehat{y}} + \text{h.c} \right] + 2i\gamma \sum_{j} f_{j}^{\dagger} f_{j}
$$

- Steady-state solution given by f_i vacuum
- Symmetry analysis implies only non-zero expectation values are W_i operators
- Fermion excitations cost energy 2γ , gauge-invariant 4γ excitation defines "fermion Liouvillian gap"

Analysis of "interlayer" gauge excitations

Flip intralayer gauge field at site k , Lindblad equation is now

$$
i\mathcal{L} = J \sum_{\langle jk \rangle} (f_j^{\dagger} f_k + \text{ h.c}) + 2i\gamma \sum_{j \neq k} f_j^{\dagger} f_j + 2i\gamma (1 - f_k^{\dagger} f_k)
$$

$$
\gamma \to \infty, \text{ steady-state solution}
$$

$$
n_k = 1, n_{j \neq k} = 0
$$

Quantum Zeno effect - for strong dissipation, steady-state solutions emerge with definite Γ_k^5 eigenvalue

Analysis of "interlayer" gauge excitations

Flip intralayer gauge field at site k , Lindblad equation is now

$$
i\mathcal{L} = J \sum_{\langle jk \rangle} (f_j^{\dagger} f_k + \text{ h.c}) + 2i\gamma \sum_{j \neq k} f_j^{\dagger} f_j + 2i\gamma (1 - f_k^{\dagger} f_k)
$$

strong

Analysis of "intralayer" gauge excitations

$$
i\mathcal{L} = J \sum_{\langle jk \rangle \neq \langle j'k' \rangle} (f_j^{\dagger} f_k + \text{ h.c}) + J(f_{j'}^{\dagger} f_{k'}^{\dagger} + \text{ h.c}) + 2i\gamma \sum_j f_j^{\dagger} f_j
$$

- $W_{iR} \neq W_{iL}$ induces pairing terms, symmetry sector corresponds to $\Gamma^{1,2,3,4}$ operators
- Gauge invariance prevents Zeno effect as $\gamma \to \infty$

What about topological order?

Four degenerate steady-states - "topological order" in doubled Hilbert space, but quantum superpositions are classical in our original Hilbert space

General picture: gauge sectors define distinct equilibration timescasles

