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Open quantum systems = non-equilibrium phases?

Simplest model: ρsys = e−βHsys

Emerging ideas: engineering of en-

vironmental couplings lead to richer

physics
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Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
i

(
LiρL

†
i −

1

2

{
L†
iLi, ρ

})

Treat L as Hamiltonian acting on

“doubled” Hilbert space of operators,

O =
∑
ij

Oij |ψi⟩ ⟨ψj | ⇒
∑
ij

Oij |ψi⟩ ⊗ |ψj⟩

and ⟨O1|O2⟩ ∼ TrO†
1O2.

iL = Heff ⊗ 1− 1⊗H†
eff + iγ

∑
i

Li ⊗ L†
i

Heff ≡ H − iγ

2

∑
i

L†
iLi

Part 1: Define our model and

demonstrate exact solvability

Part 2: Interpret meaning of

ground states, excited states, etc



3

Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
i

(
LiρL

†
i −

1

2

{
L†
iLi, ρ

})
Treat L as Hamiltonian acting on

“doubled” Hilbert space of operators,

O =
∑
ij

Oij |ψi⟩ ⟨ψj | ⇒
∑
ij

Oij |ψi⟩ ⊗ |ψj⟩

and ⟨O1|O2⟩ ∼ TrO†
1O2.

iL = Heff ⊗ 1− 1⊗H†
eff + iγ

∑
i

Li ⊗ L†
i

Heff ≡ H − iγ

2

∑
i

L†
iLi

Part 1: Define our model and

demonstrate exact solvability

Part 2: Interpret meaning of

ground states, excited states, etc



3

Generic open quantum system dynamics described by Lindbladian

Lindblad equation - general Markovian evolution satisfying CPTP conditions

dρ

dt
= L[ρ] = −i[H, ρ] +

∑
i

(
LiρL

†
i −

1

2

{
L†
iLi, ρ

})
Treat L as Hamiltonian acting on

“doubled” Hilbert space of operators,

O =
∑
ij

Oij |ψi⟩ ⟨ψj | ⇒
∑
ij

Oij |ψi⟩ ⊗ |ψj⟩

and ⟨O1|O2⟩ ∼ TrO†
1O2.

iL = Heff ⊗ 1− 1⊗H†
eff + iγ

∑
i

Li ⊗ L†
i

Heff ≡ H − iγ

2

∑
i

L†
iLi

Part 1: Define our model and

demonstrate exact solvability

Part 2: Interpret meaning of

ground states, excited states, etc



4

Exact solvability in the Kitaev honeycomb model: a review

H = Jx
∑

x-links

σxj σ
x
k + Jy

∑
y-links

σyj σ
y
k

+ Jz
∑

z-links

σzjσ
z
k

σαj = icjb
α
j cj

∏
α

bαj = 1

• General construction - n anti-commuting matrices on a lattice of coordination

number n

• Accomplished by Γ matrices,
{
Γa,Γb

}
= 2δab

Kitaev 2006; Wu, Arovas, and Hung 2009.
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Exactly solvable bilayer models lift to Lindbladian picture

Define Kitaev-like model on bilayer square lattice, coordination number of 5

requires Γa, a = 1, . . . , 5 (microscopic DOFs are spin-3/2 or spin/orbital)

H =
∑
j

[
JxΓ

1
jΓ

2
j+x̂ + JyΓ

3
jΓ

4
j+ŷ

]
Conserved quantities: flux operators Wi,

bond operators Viα

Yao, Zhang, and Kivelson 2009.
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Exactly solvable bilayer models lift to Lindbladian picture

Define Kitaev-like model on bilayer square lattice, coordination number of 5

requires Γa, a = 1, . . . , 5 (microscopic DOFs are spin-3/2 or spin/orbital)

Add quantum jump operator Lj = Γ5
j ,

representation in doubled Hilbert space is

iL = H[ΓR]−H[ΓL] + iγ
∑
j

Γ5
jLΓ

5
jR − iγN

Conserved fluxes WiR ,WiL along with

conserved superoperators

Uiα[ρ] = ViαρViα

Yao, Zhang, and Kivelson 2009.
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Exact solvability through Majorana decomposition

Use mapping Γa
jR = idjRc

a
jR and likewise for Γa

jL

iL =
∑

ℓ=L,R

∑
i

sℓ
[
Jx ŵi,x,ℓ idi,ℓdi+x̂,ℓ + Jy ŵi,y,ℓ idi,ℓdi+ŷ,ℓ

]
− γ

∑
i

v̂i di,Rdi,L − iγN

sR = 1 , sL = −1 cajℓ bilinears, conserved quantities ±1

Lindblad equation can be expressed as Ma-

jorana fermions coupled to static Z2 gauge

fields - free fermions in each gauge sector.
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What is the physical interpretation of these solutions?

For t→ ∞, initial states asymptote to

steady-state solutions ρss, where

L |ρss⟩ = 0

Symmetry-based characterization

⟨A|ρ⟩ = 0 unless A and ρ are in the

same symmetry sector. Extensive

number of flux operators makes this

a powerful tool!

Excitations define Liouvillian gap λ,

transient behavior over timescales t ∼ 1

λ

Particle-based characterization

Different “particles” correspond to

equilibration of different observ-

ables

|ρss⟩+ |a⟩ −−−−→
t∼λ−1

a

|ρss⟩
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What are the steady-state solutions?

Goal: find flux configurations that contain steady-state solutions.

Lieb’s theorem analogy

Eigenfunctions with non-zero trace must be steady-state solutions by trace-

preservation of the Lindbladian. ⟨1|O⟩ ̸= 0 means that |1⟩ and |O⟩ must be

in the same symmetry sector

Interlayer flux constraint

Uiα[1] = Viα1Viα = 1

Enforces Uiα = 1

Intralayer flux constraint

WiR[1] =WiL[1]

Enforces WiR =WiL ≡Wi
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Complex fermion representation reveals steady-state solutions

iL = J
∑
j

[
ŵj,j+x̂f

†
j fj+x̂ + ŵj,j+ŷf

†
j fj+ŷ + h.c

]
+ 2iγ

∑
j

f †j fj

• Steady-state solution given by fj vacuum

• Symmetry analysis implies only non-zero

expectation values are Wi operators

• Fermion excitations cost energy 2γ,

gauge-invariant 4γ excitation defines

“fermion Liouvillian gap”
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Analysis of “interlayer” gauge excitations

Flip intralayer gauge field at site k, Lindblad equation is now

iL = J
∑
⟨jk⟩

(f †j fk + h.c) + 2iγ
∑
j ̸=k

f †j fj + 2iγ(1− f †kfk)

γ → ∞, steady-state solution

nk = 1 , nj ̸=k = 0

Quantum Zeno effect - for strong

dissipation, steady-state solutions

emerge with definite Γ5
k eigenvalue
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Analysis of “intralayer” gauge excitations

iL = J
∑

⟨jk⟩≠⟨j′k′⟩

(f †j fk + h.c) + J(f †j′f
†
k′ + h.c) + 2iγ

∑
j

f †j fj

• WiR ̸=WiL induces pairing terms,

symmetry sector corresponds to

Γ1,2,3,4 operators

• Gauge invariance prevents Zeno

effect as γ → ∞
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What about topological order?

Four degenerate steady-states -

“topological order” in doubled

Hilbert space, but quantum super-

positions are classical in our origi-

nal Hilbert space
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General picture: gauge sectors define distinct equilibration timescasles


