Variational wavefunctions for fractionalized Fermi liquids

Henry Shackleton

June 5, 2024

Harvard University

Variational wavefunctions for topologically-ordered Fermi liquids

w/ Shiwei Zhang, Flatiron Institute

Quantum spin liquids

Quantum spin liquids

 $\vec{S}_i \rightarrow f^{\dagger}_{i\alpha} \vec{\sigma}_{\alpha\beta} f_{i\beta}$ Theoretical description: Spinons + emergent gauge field

Quantum spin liquids

 $\vec{S}_i \rightarrow f^{\dagger}_{i\alpha} \vec{\sigma}_{\alpha\beta} f_{i\beta}$ Theoretical description: Spinons + emergent gauge field

Variational WFs: $\prod (1 - n_{i\uparrow} n_{i\downarrow}) | \psi_0 \rangle$

 $\vec{S}_i \rightarrow f^{\dagger}_{i\alpha} \vec{\sigma}_{\alpha\beta} f_{i\beta}$ Theoretical description: Spinons + emergent gauge field

Variational WFs: $\prod (1 - n_{i\uparrow} n_{i\downarrow}) |\psi_0\rangle$

QSLs with charge fluctuations

Theoretical description: Spinons + chargons + emergent gauge field

 $\vec{S}_i \rightarrow f^{\dagger}_{i\alpha} \vec{\sigma}_{\alpha\beta} f_{i\beta}$ Theoretical description: Spinons + emergent gauge field

Variational WFs: $\prod (1 - n_{i\uparrow} n_{i\downarrow}) | \psi_0 \rangle$

QSLs with charge fluctuations

Theoretical description: Spinons + chargons + emergent gauge field

Variational WFs: this talk

Where are these variational wavefunctions useful?

Doped Mott insulators - capturing low temperature physics with TO¹

¹Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006 ²Szasz et al., *Physical Review X*,. 2020

Where are these variational wavefunctions useful?

Doped Mott insulators - capturing low temperature physics with TO¹

¹Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006 ²Szasz et al., *Physical Review X*,. 2020

Problem: bosonic (permanent) wavefunctions not numerically tractable

Fully fermionic mean-field ansatz, projection possible with Monte Carlo sampling

Mean-field picture: electron-like quasiparticles + decoupled spin liquid

³Zhang and Sachdev, *Physical Review B*, 2020; Mascot et al., *Physical Review B*, 2022.

Mean-field picture: electron-like quasiparticles + decoupled spin liquid

³Zhang and Sachdev, *Physical Review B*, 2020; Mascot et al., *Physical Review B*, 2022.

Mean-field picture: electron-like quasiparticles + decoupled spin liquid

³Zhang and Sachdev, *Physical Review B*, 2020; Mascot et al., *Physical Review B*, 2022.

Mean-field picture: electron-like quasiparticles + decoupled spin liquid

³Zhang and Sachdev, *Physical Review B*, 2020; Mascot et al., *Physical Review B*, 2022.

Polaronic correlations central for capturing doped Mott insulators

Polaronic correlations central for capturing doped Mott insulators

Do these wavefunctions support polaronic correlations?

⁴Song, *Physical Review B*,. 2021.

• Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- Respectable energetics low-energy states

⁴Song, *Physical Review B*, 2021.

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- · Respectable energetics low-energy states
- Can these WFs reconstruct higher-point correlators?

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- · Respectable energetics low-energy states
- Can these WFs reconstruct higher-point correlators?

• CSL on triangular lattice Hubbard model - which CSL?⁴

⁴Song, *Physical Review B*,. 2021.

 Actual ground state: AF insulator for U/t > 0

- Actual ground state: AF insulator for U/t > 0
- π-flux spin liquid gives low-energy variational ansatz in the Heisenberg limit

- Actual ground state: AF insulator for U/t > 0
- π-flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be U

- Actual ground state: AF insulator for U/t > 0
- π-flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be U

- Actual ground state: AF insulator for U/t > 0
- π-flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be U

