Fractionalized Fermi Liquids: Mean-Field Theories, Instabilities, and Variational Wavefunctions

Henry Shackleton June 18, 2024

Cuprate phase diagram as an inspiration for correlated physics

Cuprate phase diagram as an inspiration for correlated physics

• "Strange metal" phase - *T* linear resistivity from a theory of a quantum critical metal

1

Cuprate phase diagram as an inspiration for correlated physics

- "Strange metal" phase *T* linear resistivity from a theory of a quantum critical metal
- Pseudogap metal and proximate ordered phases from a theory of fractionalized Fermi liquids

1

(Partial) acknowledgements

Subir Sachdev

Yahui Zhang

Maria Tikhanovskaya

Jonas von Milczewski

Dirk Morr

Darshan Joshi

Maine Christos

Alexander Nikolaenko

Zhu-Xi Luo

Eric Mascot

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

\n
$$
\vec{S}_i \rightarrow f_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} f_{i\beta}, \text{ emergent gauge fluctuations}
$$

\n
$$
H \rightarrow \sum_{ij} t_{ij} f_{i\sigma}^{\dagger} f_{j\sigma} + \dots
$$

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

\n
$$
\vec{S}_i \rightarrow f_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} f_{i\beta},
$$
 emergent gauge fluctuations
\n
$$
H \rightarrow \sum_{ij} t_{ij} f_{i\sigma}^{\dagger} f_{j\sigma} + \dots
$$

• Bosonic/fermionic theories, classification with projective symmetry groups

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

\n
$$
\vec{S}_i \rightarrow f_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} f_{i\beta} ,
$$
 emergent gauge fluctuations
\n
$$
H \rightarrow \sum_{ij} t_{ij} f_{i\sigma}^{\dagger} f_{j\sigma} + ...
$$

- Bosonic/fermionic theories, classification with projective symmetry groups
- Instabilities to ordered phases (spinon condensation, confining instabilities)

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

\n
$$
\vec{S}_i \rightarrow f_{i\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} f_{i\beta} ,
$$
 emergent gauge fluctuations
\n
$$
H \rightarrow \sum_{ij} t_{ij} f_{i\sigma}^{\dagger} f_{j\sigma} + ...
$$

- Bosonic/fermionic theories, classification with projective symmetry groups
- Instabilities to ordered phases (spinon condensation, confining instabilities)
- Numerical evaluation of correlated wavefunctions, $P_G |\psi_0\rangle$ important for quantitative predictions

$$
H = \sum_{p} \epsilon_{p} c_{p\sigma}^{\dagger} c_{p\sigma} + \sum_{ij} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j} + J_{K} \sum_{i} \vec{S}_{i} \cdot \vec{s}_{i}
$$

Senthil, Sachdev, and Vojta, *Physical Review Letters*, 2003.

$$
H = \sum_{p} \epsilon_{p} c_{p\sigma}^{\dagger} c_{p\sigma} + \sum_{ij} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j} + J_{\mathcal{K}} \sum_{i} \vec{S}_{i} \cdot \vec{s}_{i}
$$

Senthil, Sachdev, and Vojta, *Physical Review Letters*, 2003.

$$
H = \sum_{p} \epsilon_{p} c_{p\sigma}^{\dagger} c_{p\sigma} + \sum_{ij} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j} + J_{K} \sum_{i} \vec{S}_{i} \cdot \vec{s}_{i}
$$

Senthil, Sachdev, and Vojta, *Physical Review Letters*, 2003.

$$
H = \sum_{p} \epsilon_{p} c_{p\sigma}^{\dagger} c_{p\sigma} + \sum_{ij} J_{ij} \vec{S}_{i} \cdot \vec{S}_{j} + J_{\mathcal{K}} \sum_{i} \vec{S}_{i} \cdot \vec{s}_{i}
$$

Senthil, Sachdev, and Vojta, *Physical Review Letters*, 2003.

² Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006.

• Electron-like excitations given by spinon/holon bound state

² Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006.

- Electron-like excitations given by spinon/holon bound state
- Bosonic holons difficult to dope on a mean-field level

² Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006.

- Electron-like excitations given by spinon/holon bound state
- Bosonic holons difficult to dope on a mean-field level
- Obstacles to constructing correlated wavefunctions

² Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006.

 $C_{i\sigma}$

³ Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020.

Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020.

Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020.

Mean-field analysis on square lattice yields pseudogap-like features

Mean-field picture: electron-like quasiparticles + decoupled spin liquid ⁴

⁴ Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020; Mascot et al., *Physical Review B*,. 2022 ⁵Rice, Yang, and F. C. Zhang, *Reports on Progress in Physics*, 2012

Mean-field picture: electron-like quasiparticles + decoupled spin liquid 4 Half filling: Mott insulator with charge

⁴ Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020; Mascot et al., *Physical Review B*,. 2022 ⁵Rice, Yang, and F. C. Zhang, *Reports on Progress in Physics*, 2012

Mean-field analysis on square lattice yields pseudogap-like features

Mean-field picture: electron-like quasiparticles $+$ decoupled spin liquid 4 Half filling: Mott insulator with charge

4 Y.-H. Zhang and Sachdev, *Physical Review B*,. 2020; Mascot et al., *Physical Review B*,. 2022 ⁵Rice, Yang, and F. C. Zhang, *Reports on Progress in Physics*, 2012

Choice of spin liquid dictates proximate phases

Tanaka and Hu, *Phys. Rev. Lett.*, 2005; Wang et al., *Phys. Rev. X*,. 2017

Choice of spin liquid dictates proximate phases

• Intrinsic instabilities in spin liquid phase give one route to ordered phases

⁶ Tanaka and Hu, *Phys. Rev. Lett.*, 2005; Wang et al., *Phys. Rev. X*,. 2017

Choice of spin liquid dictates proximate phases

- Intrinsic instabilities in spin liquid phase give one route to ordered phases
- Fermionic theory of a π -flux spin liquid leads to Néel/VBS order ⁶

⁶ Tanaka and Hu, *Phys. Rev. Lett.*, 2005; Wang et al., *Phys. Rev. X*,. 2017

Charge instabilities arise from chargon condensation

Charge instabilities arise from chargon condensation

Polaronic correlations central for capturing doped Mott insulators

Polaronic correlations central for capturing doped Mott insulators

Do these wavefunctions support polaronic correlations?

Koepsell et al., Science, 2021

Nodal anisotropic quasiparticles in superconducting state⁷

⁷Christos and Sachdev, *npj Quantum Materials*, 2024 ⁸Bonetti et al., arXiv:2405.08817 9 Szasz et al., *Physical Review X*,. 2020

Related work and future directions

⁷Christos and Sachdev, *npj Quantum Materials*, 2024 ⁸Bonetti et al., arXiv:2405.08817 9 Szasz et al., *Physical Review X*,. 2020

Related work and future directions

for spin liquids emerging at metal/insulator transitions⁹ (a) (e)

 117.0

⁷Christos and Sachdev, *npj Quantum Materials*, 2024 ⁸Bonetti et al., arXiv:2405.08817 9 Szasz et al., *Physical Review X*,. 2020

 $15/6$

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

- Actual ground state: AF insulator for $U/t > 0$
- π -flux spin liquid gives low-energy variational ansatz in the Heisenberg limit
- Simple ansatz gives mean-field charge gap 2Φ, which we fix to be *U*

