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Non-Hermiticity Enriches Phase Diagrams

Non-Hermitian extensions yield
• Exotic phase transitions
• Unique topological
invariants/phases
• Exceptional points

Pseudo-Hermiticity/PT -symmetry
ηH = H†η implies E∗ ↔ E

Re(E)

Im(E)

Naghiloo et al., “Quantum state tomography across the exceptional point in a single dissipative
qubit”.
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Symmetry-Based Criteria for Exceptional Points
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Krein, “A generalization of some investigations of linear differential equations with periodic
coefficients”.



Symmetry-Based Criteria for Exceptional Points

Re(E)

Im(E)

Krein, “A generalization of some investigations of linear differential equations with periodic
coefficients”.



Symmetry-Based Criteria for Exceptional Points

Re(E)

Im(E)

Krein, “A generalization of some investigations of linear differential equations with periodic
coefficients”.



Symmetry-Based Criteria for Exceptional Points

Re(E)

Im(E)

Krein, “A generalization of some investigations of linear differential equations with periodic
coefficients”.



Symmetry-Based Criteria for Exceptional Points

Re(E)

Im(E)

Krein, “A generalization of some investigations of linear differential equations with periodic
coefficients”.



Topological GSD Not Symmetry-Based, May Yield Non-Trivial Physics

GSD arises from topological properties; no
reason any additional symmetries should act
non-trivially
Choice of symmetry dictates the form of
non-Hermitian perturbations



Stabilizer Codes Yield Unique Symmetries
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Unique class of symmetries that allows
disordered perturbations on entire
lattice
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∏
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Kitaev, “Fault-tolerant quantum computation by anyons”.



Geometric Criteria for Protection of Code Space

η =
∏
i Zi =

Even-by-even toric code has reality-protected GSD to generic psuedo-Hermitian
perturbations, other system sizes unstable



Exceptional Points Arise In Odd System Sizes
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Even-by-even Odd-by-even



Geometric Criteria Generalizes to Fracton Models

X-cube model GSD protected on e× e× e lattice

H = Av +
∑

i=x,y,z Bip
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Vijay, Haah, and Fu, “Fracton topological order, generalized lattice gauge theory, and duality”.



Geometric Criteria Generalizes to Fracton Models

• Checkerboard model1 always works
(only definable on even system
sizes)
• Quantum fractal spin liquids2 also
protected
• Haah’s cubic codes3 gives diverse
classification4

1Vijay, Haah, and Fu, “Fracton topological order, generalized lattice gauge theory, and duality”.
2Yoshida, “Exotic topological order in fractal spin liquids”.
3Haah, “Local stabilizer codes in three dimensions without string logical operators”.
4Dua et al., “Bifurcating entanglement-renormalization group flows of fracton stabilizer models”.
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Conclusions

• Topological order provides a unique setting for studying non-Hermitian
perturbations
• Stabilizer models naturally give rise to system size-dependent behavior of
psuedo-Hermitian perturbations
• Open questions: what is the nature of topological order at an exceptional
point?


