Protection of parity-time symmetry in topological many-body systems

Henry Shackleton March 19, 2021

Harvard University

Mathias Scheurer (Universitat Innsbruck)

Phys. Rev. Research 2, 033022

- Exotic phase transitions
- Unique topological invariants/phases
- Exceptional points

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit".

- Exotic phase transitions
- Unique topological invariants/phases
- Exceptional points

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit".

- Exotic phase transitions
- Unique topological invariants/phases
- Exceptional points

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit".

- Exotic phase transitions
- Unique topological invariants/phases
- Exceptional points

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit".

- Exotic phase transitions
- Unique topological invariants/phases
- Exceptional points

Naghiloo et al., "Quantum state tomography across the exceptional point in a single dissipative qubit".

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

Krein, "A generalization of some investigations of linear differential equations with periodic coefficients".

GSD arises from topological properties; no reason any additional symmetries should act non-trivially Choice of symmetry dictates the form of non-Hermitian perturbations

Stabilizer Codes Yield Unique Symmetries

Unique class of symmetries that allows disordered perturbations on entire lattice

 $\eta = \prod_i X_i, Y_i, Z_i$

Allows $i \sum_{i} g_i Z_i$, $i \sum_{ijk} g_{ijk} X_i Z_j Z_k$...

Kitaev, "Fault-tolerant quantum computation by anyons".

Geometric Criteria for Protection of Code Space

Even-by-even toric code has reality-protected GSD to generic psuedo-Hermitian perturbations, other system sizes unstable

Exceptional Points Arise In Odd System Sizes

X-cube model GSD protected on $e \times e \times e$ lattice

Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality".

Geometric Criteria Generalizes to Fracton Models

- Checkerboard model¹ always works (only definable on even system sizes)
- Quantum fractal spin liquids² also protected
- Haah's cubic codes³ gives diverse classification⁴

		CC_2		CC_5		CC_{11}		
System		CC		CCm		CCu		
Size	CC_1	CC_{0}	CC_4	CC16	CC_7	CC15	CC_{13}	CC_{17}
$E \times E \times E$				10		10	10	
E×E×e	1	1	1	1	1	1	1	1
$e \times E \times E$		· ·	· ·		· ·	-	<u> </u>	<u> </u>
$o \times E \times E$								
$E \times e \times E$								
$E \times e \times e$	1	1	1	1	~	1	1	x
$e \times e \times E$								
$e \times E \times E$								
$E \times o \times E$								
$e \times e \times e$	1	1	1	~	1	~	×	×
$E \times E \times o$	1	1	1	~	~	×	X	~
$e \times o \times E$								
$E \times o \times e$								
$e \times o \times e$	X	1	1	~	~	~	×	×
$e \times E \times o$								
$E \times e \times o$								
e × e × o								
e×o×o		,		,	,			
E×o×o	*	~		~	~	×		<u> </u>
o×e×E								
OXEXe	×	×	1	1	1	1	×	×
O X O X E	^	~	•				~	<u>^</u>
0 × 0 × 0	×	×	×	×	1	1	×	×
0 × 0 × 0	^	~	~	<i>r</i>			~	<i>r</i>
0 × 6 × 0								
0 × 0 × 0	×	×	×	×	x	×	×	×

¹Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality". ²Yoshida, "Exotic topological order in fractal spin liquids".

³Haah, "Local stabilizer codes in three dimensions without string logical operators".

⁴Dua et al., "Bifurcating entanglement-renormalization group flows of fracton stabilizer models".

Geometric Criteria Generalizes to Fracton Models

- Checkerboard model¹ always works (only definable on even system sizes)
- Quantum fractal spin liquids² also protected
- Haah's cubic codes³ gives diverse classification⁴

		CC		CC_5		CC_{11}		
System		CC.		CCm		CC		
Size	CC	CC	CC_{4}	CCus	CC_{7}	CCus	CC_{12}	CC_{17}
EVEVE				10		0 0 10	10	0.01
EXEXE	1	1	1	1	1	1	1	1
A X E X E		•			•	•	•	v
0 × E × E								
EXeXE								
Exexe	1	1	1	1	1	1	1	x
exexE		•	•	•	•	•	· ·	<i>.</i>
$e \times E \times E$								
$E \times o \times E$								
$e \times e \times e$	1	1	1	1	1	1	×	x
$E \times E \times o$	1	1	1	1	1	×	×	1
$e \times o \times E$	-							
$E \times o \times e$								
$e \times o \times e$	×	1	1	~	1	1	×	x
$e \times E \times o$								
$E \times e \times o$								
$e \times e \times o$								
$e \times o \times o$								
$E \times o \times o$	X	1	×	~	1	×	×	x
$o \times e \times E$								
$o \times E \times e$								
$o \times e \times e$	×	×	~	~	~	~	×	x
$o \times o \times E$								
$o \times o \times e$	×	×	×	×	~	~	×	×
$o \times E \times o$								
$o \times e \times o$								
$0 \times 0 \times 0$	×	×	×	x	×	×	×	×

¹Vijay, Haah, and Fu, "Fracton topological order, generalized lattice gauge theory, and duality". ²Yoshida, "Exotic topological order in fractal spin liquids".

³Haah, "Local stabilizer codes in three dimensions without string logical operators".

⁴Dua et al., "Bifurcating entanglement-renormalization group flows of fracton stabilizer models".

- Topological order provides a unique setting for studying non-Hermitian perturbations
- Stabilizer models naturally give rise to system size-dependent behavior of psuedo-Hermitian perturbations
- Open questions: what is the nature of topological order at an exceptional point?