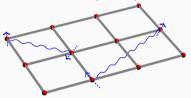
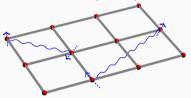
Variational wavefunctions for topologically-ordered Fermi liquids

Henry Shackleton February 23, 2024

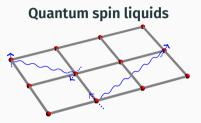
Harvard University


Variational wavefunctions for topologically-ordered Fermi liquids

w/ Shiwei Zhang, Flatiron Institute

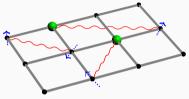

Quantum spin liquids

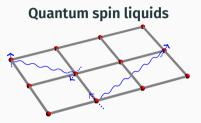
Quantum spin liquids


Theoretical description: Spinons + emergent gauge field

Quantum spin liquids

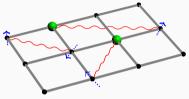
Theoretical description: Spinons + emergent gauge field


Variational WFs: $\mathcal{P}_{G} | \psi_{0} \rangle$


Theoretical description: Spinons + emergent gauge field

Variational WFs: $\mathcal{P}_{G} | \psi_{0} \rangle$

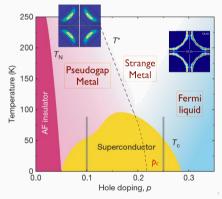
QSLs with charge fluctuations


Theoretical description: Spinons + holons + emergent gauge field

Theoretical description: Spinons + emergent gauge field

Variational WFs: $\mathcal{P}_{G} | \psi_{0} \rangle$

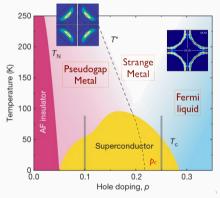
QSLs with charge fluctuations

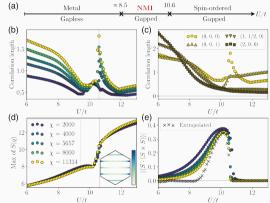


Theoretical description: Spinons + holons + emergent gauge field

Variational WFs: this talk

Where are these variational wavefunctions useful?


Doped Mott insulators - capturing low temperature physics with TO¹


¹Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006 ²Szasz et al., *Physical Review X*,. 2020

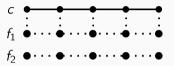
Where are these variational wavefunctions useful?

Doped Mott insulators - capturing low temperature physics with TO¹

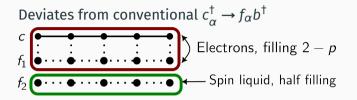
Chiral spin liquid in triangular lattice Hubbard model²

¹Lee, Nagaosa, and Wen, *Reviews of Modern Physics*, 2006 ²Szasz et al., *Physical Review X*,. 2020

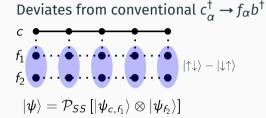
Deviates from conventional $c^{\dagger}_{\alpha} \rightarrow f_{\alpha} b^{\dagger}$

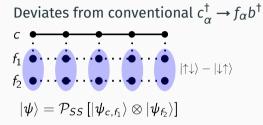

³Zhang and Sachdev, *Physical Review Research*, 2020.

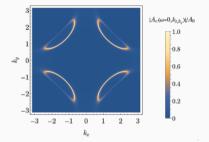
Deviates from conventional $c^{\dagger}_{\alpha} \rightarrow f_{\alpha} b^{\dagger}$



³Zhang and Sachdev, *Physical Review Research*, 2020.

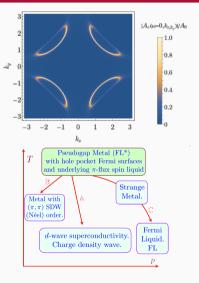



³Zhang and Sachdev, *Physical Review Research*, 2020.



³Zhang and Sachdev, *Physical Review Research*, 2020.

³Zhang and Sachdev, *Physical Review Research*, 2020.



³Zhang and Sachdev, *Physical Review Research*, 2020.

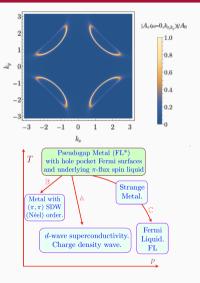
Deviates from conventional
$$c^{\dagger}_{\alpha} \rightarrow f_{\alpha}b$$

 $c \quad \bullet \quad \bullet \quad \bullet$

 $\ket{\psi} = \mathcal{P}_{SS} \left[\ket{\psi_{c,f_1}} \otimes \ket{\psi_{f_2}}
ight]$

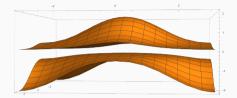
Assume π -flux spin liquid, investigate properties wrt Hubbard model

³Zhang and Sachdev, *Physical Review Research*, 2020.

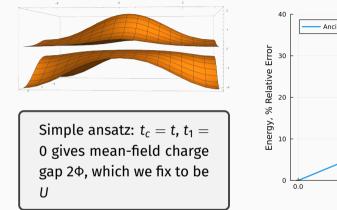

Deviates from conventional
$$c^{\dagger}_{\alpha} \rightarrow f_{\alpha} b^{\dagger}$$

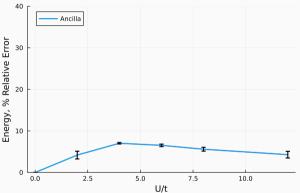
$$\begin{array}{c} f_1 \\ \bullet \\ f_2 \end{array} \\ \bullet \end{array} \\ \bullet \end{array} \\ \bullet \end{array} \\ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\ \bullet \end{array} \\ \bullet \end{array} \\ \begin{array}{c} \bullet \\ \bullet \\ \bullet \end{array} \\ \bullet \end{array} \\ \left| \uparrow \downarrow \right\rangle - \left| \downarrow \uparrow \right\rangle \\ \end{array}$$

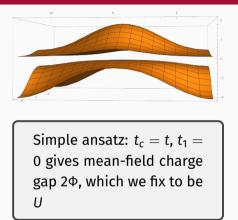
$$\ket{\psi} = \mathcal{P}_{SS} \left[\ket{\psi_{c,f_1}} \otimes \ket{\psi_{f_2}}
ight]$$

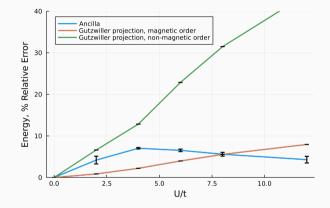

Assume π -flux spin liquid, investigate properties wrt Hubbard model

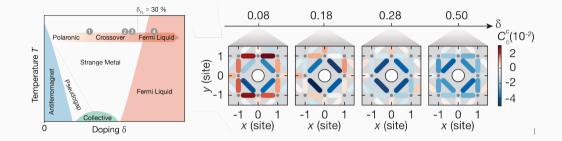
Full rung singlet projection exponentially hard, instead use $e^{-\beta \sum_i (S_{1i}+S_{2i})^2} \mathcal{P}_{S_z=0} |\psi_0\rangle$


³Zhang and Sachdev, *Physical Review Research*, 2020.

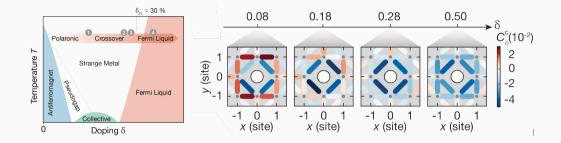

Half-filling: WFs behave favorably energetically ($eta=\infty$)


Simple ansatz: $t_c = t$, $t_1 = 0$ gives mean-field charge gap 2 Φ , which we fix to be U

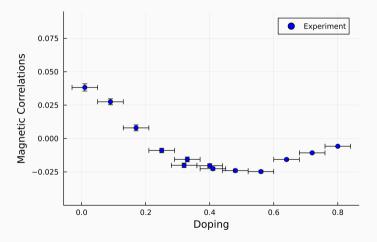

Half-filling: WFs behave favorably energetically ($eta=\infty$)



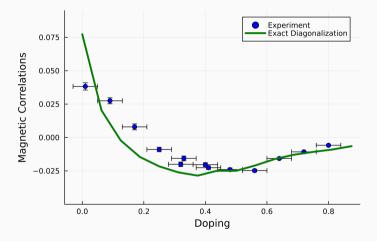
Half-filling: WFs behave favorably energetically ($eta=\infty$)



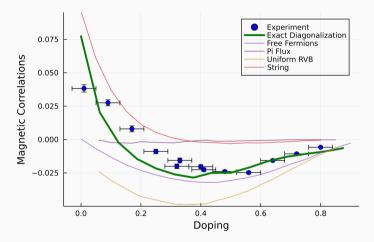
Polaronic correlations essential for capturing doped Mott insulators

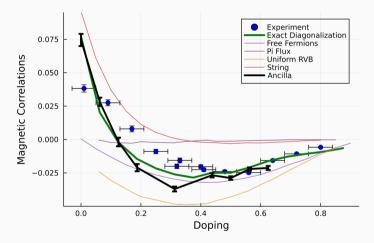


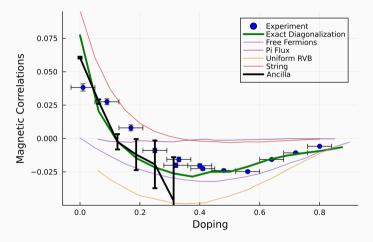
Polaronic correlations essential for capturing doped Mott insulators

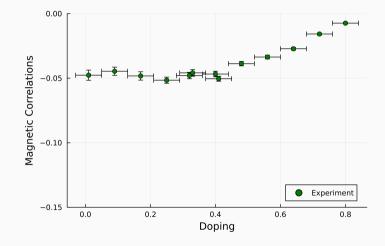


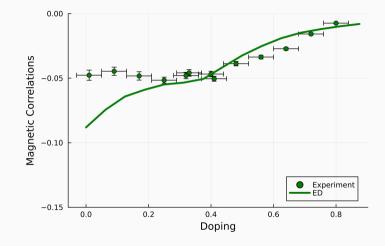
Do these wavefunctions support polaronic correlations?

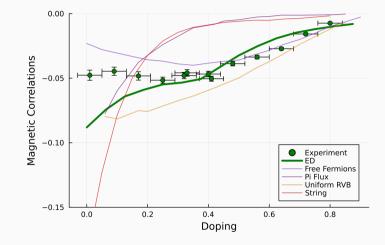


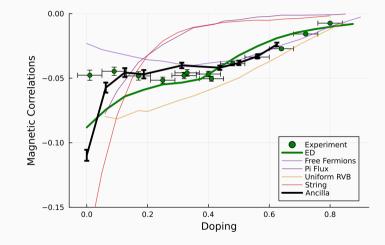


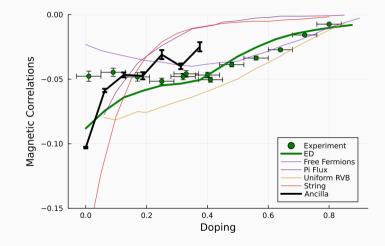


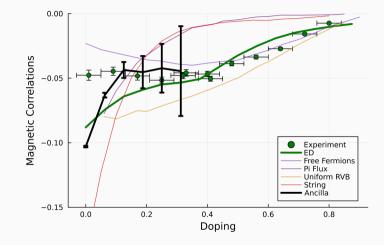


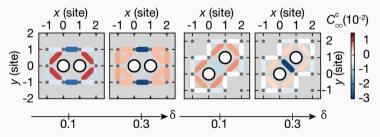






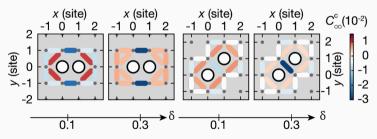





⁴Song, *Physical Review B*,. 2021.

• Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- Respectable energetics low-energy states


⁴Song, *Physical Review B*, 2021.

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- · Respectable energetics low-energy states
- Can these WFs reconstruct higher-point correlators?

⁴Song, *Physical Review B*,. 2021.

- Variational WFs of fractionalized Fermi liquids capable of capturing multi-point correlators of doped Hubbard models
- · Respectable energetics low-energy states
- Can these WFs reconstruct higher-point correlators?

• CSL on triangular lattice Hubbard model - which CSL?⁴

⁴Song, *Physical Review B*,. 2021.