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« No quasiparticle excitations
- Extensive entropyas T — 0
+ Connections to holography
« Analytically tractable

Experimental challenges: suppress kinetic
energy, generate disordered interactions




SYK as a minimal model for holographic physics
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Can we use sample-to-sample fluctua-
tions as a diagnostic of strongly correlated
physics?




Transport fluctuations as a probe of non-Fermi liquid physics

Fermi liquid
» Universal conductance fluctuations
from single-particle chaos'

s

AG [e'/h]
o

L L
4 6 8

HI[T]

« Sharp single-particle peaks

TLee and Stone, Physical Review Letters, 1985; Washburn and Webb, Advances in Physics, 1986



Transport fluctuations as a probe of non-Fermi liquid physics

Fermi liquid SYK model

+ Universal conductance fluctuations  Exponential DOS at low energy
from single-particle chaos' R
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Proposed realizations in disordered graphene flakes®
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Proposed realizations in disordered graphene flakes®

[ Exp: Laurel Anderson (W06.003)? ]
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Non-Fermi liquid physics probed through transport quantities

Competing energy scales:
» SYK interaction J

Random hopping t

Charging energy E.
Coupling to leads I

Schwarzian corrections J/N
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SYK island
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Non-Fermi liquid physics probed through transport quantities

Competing energy scales:
» SYK interaction J

SYK island
J,t,E Ec

Ai
T N .7

This talk: consider competition between Fermi liquid (t) and SYK physics (J)

Random hopping t

Charging energy E.

normal metal

Coupling to leads I

Schwarzian corrections J/N
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Transport quantities: disordered Fermi liquid below Econ ~ t2//, SYK above
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Transport quantities: disordered Fermi liquid below Econ ~ t2//, SYK above

- Transport quantities given by isolated Green'’s function of quantum dot*

« Average Green'’s function has exact large-N solution

Gsyk(w) T>> Econ
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Transport quantities: disordered Fermi liquid below Econ ~ t2//, SYK above

- Transport quantities given by isolated Green'’s function of quantum dot*

« Average Green'’s function has exact large-N solution

Gsyk(w) T>> Econ

Try same philosophy for transport fluctuations: non-interacting fluctua-
tions for T < Econ, SYK fluctuations for T > Econ

“Kruchkov et al., Physical Review B,. 2020.
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Non-interacting Fermi liquid prediction: random matrix theory

Conductance fluctuations of a closed non-interacting quantum dot
Key quantity to calculate: (Im Gjj(w)){Im Gji(€))
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Non-interacting Fermi liquid prediction: random matrix theory

Conductance fluctuations of a closed non-interacting quantum dot
Key quantity to calculate: (Im Gjj(w)){Im Gji(€))
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Pure SYK prediction: strongly self-averaging

i >N
N~
?::/);\: j
N>



Pure SYK prediction: strongly self-averaging

i (N ; - -
7 :/t\‘; ,7 i 5 5 j
\_y/

“Universal” fluctuations of spectral density

2
> {Im Gij(w)) {Im Gji(€)) = 5 (IMG(w)) x (imG(e))

ij




Pure SYK prediction: strongly self-averaging

i < . : -
< / ~J J

‘Z' F /t\‘; j ?: > - j
N

“Universal” fluctuations of spectral density

2
> {Im Gij(w)) {Im Gji(€)) = 5 (IMG(w)) x (imG(e))

ij

4e’l 2
o= / dwf’(w)ImG(w) = Vara_N3o2




Pure SYK prediction: strongly self-averaging
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Random hoppings still drive fluctuations even in SYK regime!

« How does a non-Fermi liquid “see” other forms of disorder?
+ SYK physics do not universally suppress other disorder sources
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Takeaway from previous results

- Statistical fluctuations in realistic SYK models - a subtle problem!

« Strongly-interacting non-Fermi liquid can still “sense” single-particle
disorder

« Non-universal suppression above Ecop driven by SYK physics
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Actual experiments measure fluctuations from changing u, B, etc

Non-interacting system: u — u + 6l Graphene SYK setup - what all gets
“re-draws” random matrix re-drawn?
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Connection to experiments: what are we measuring?

Actual experiments measure fluctuations from changing u, B, etc

Non-interacting system: u — u + 6l Graphene SYK setup - what all gets
“re-draws” random matrix re-drawn?
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Future directions: Treatment for open quantum dot °
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Future directions: Treatment for open quantum dot °
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Future directions: Observable signatures of many-body quantum chaos®
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Future directions: Observable signatures of many-body quantum chaos®
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Thank you for your attention!
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