Conductance and thermopower fluctuations in interacting quantum dots

Henry Shackleton March 7, 2024

Harvard University

Conductance and thermopower fluctuations in interacting quantum dots

w/ Laurel Anderson, Philip Kim, and Subir Sachdev, arXiv:2309.05741

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} C_i^{\dagger} C_j^{\dagger} C_k C_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

• No quasiparticle excitations

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

- No quasiparticle excitations
- Extensive entropy as $T \rightarrow 0$

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

- No quasiparticle excitations
- Extensive entropy as $T \rightarrow 0$
- Connections to holography

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

- No quasiparticle excitations
- Extensive entropy as $T \rightarrow 0$
- Connections to holography
- Analytically tractable

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

- No quasiparticle excitations
- Extensive entropy as $T \rightarrow 0$
- Connections to holography
- Analytically tractable

Experimental challenges: suppress kinetic energy, generate disordered interactions

$$
H = \frac{1}{(2N)^{\frac{3}{2}}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l \qquad \langle J_{ij;kl} \rangle = 0 \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2
$$

Can we use sample-to-sample fluctuations as a diagnostic of strongly correlated physics?

Transport fluctuations as a probe of non-Fermi liquid physics

Fermi liquid

• Universal conductance fluctuations from single-particle chaos¹

• Sharp single-particle peaks

¹ Lee and Stone, *Physical Review Letters*, 1985; Washburn and Webb, *Advances in Physics*, 1986

Transport fluctuations as a probe of non-Fermi liquid physics

Fermi liquid

• Universal conductance fluctuations from single-particle chaos¹

• Sharp single-particle peaks

SYK model

• Exponential DOS at low energy

• Strongly self-averaging

¹ Lee and Stone, *Physical Review Letters*, 1985; Washburn and Webb, *Advances in Physics*, 1986

Proposed realizations in disordered graphene flakes³

Anderson et al., arXiv:2401.08050, 2024 Chen et al., *Physical Review Letters*, 2018.

Proposed realizations in disordered graphene flakes³

Exp: Laurel Anderson (W06.003)²

²Anderson et al., arXiv:2401.08050, 2024 ³Chen et al., *Physical Review Letters*, 2018.

Non-Fermi liquid physics probed through transport quantities

Competing energy scales:

- SYK interaction *J*
- Random hopping *t*
- Charging energy *E^c*
- Coupling to leads Γ
- Schwarzian corrections *J*/*N*

Non-Fermi liquid physics probed through transport quantities

Competing energy scales:

- SYK interaction *J*
- Random hopping *t*
- Charging energy *E^c*
- Coupling to leads Γ
- Schwarzian corrections *J*/*N*

This talk: consider competition between Fermi liquid (*t*) and SYK physics (*J*)

$$
H = \frac{1}{(2N)^{3/2}} \sum_{ijkl} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l + \frac{1}{N^{1/2}} \sum_{ij} t_{ij} c_i^{\dagger} c_j + \mu \sum_i c_i^{\dagger} c_i
$$

$$
\langle J_{ij;kl} \rangle = \langle t_{ij} \rangle \quad \langle J_{ij;kl}^* J_{ij;kl} \rangle = J^2 \quad \langle t_{ij}^* t_{ij} \rangle = t^2
$$

Kruchkov et al., *Physical Review B*,. 2020.

• Transport quantities given by isolated Green's function of quantum dot

Kruchkov et al., *Physical Review B*,. 2020.

- Transport quantities given by isolated Green's function of quantum dot 4
- Average Green's function has *exact* large-*N* solution

$$
G(\omega) \sim \begin{cases} G_{FL}(\omega) & T, \omega \ll E_{coh} & (\text{with } t \to E_{coh}) \\ G_{SYK}(\omega) & T \gg E_{coh} \end{cases}
$$

⁴Kruchkov et al., *Physical Review B*,. 2020.

- Transport quantities given by isolated Green's function of quantum dot⁴
- Average Green's function has *exact* large-*N* solution

$$
G(\omega) \sim \begin{cases} G_{FL}(\omega) & T, \omega \ll E_{\text{coh}} & (\text{with } t \to E_{\text{coh}}) \\ G_{\text{SYK}}(\omega) & T \gg E_{\text{coh}} \end{cases}
$$

$$
\sigma = \frac{2e^2 \Gamma}{\pi \hbar} \int_{-\infty}^{\infty} d\omega f'(\omega) \, \text{Im } G(\omega)
$$

$$
\sigma_{\text{SYK}} \sim \frac{e^2}{h} \frac{\Gamma}{\sqrt{JT}} \int_{-\infty}^{\frac{\hbar \sigma}{2}} d\omega f'(\omega) \, \text{Im } G(\omega)
$$

⁴Kruchkov et al., *Physical Review B*,. 2020.

- Transport quantities given by isolated Green's function of quantum dot 4
- Average Green's function has *exact* large-*N* solution

$$
G(\omega) \sim \begin{cases} G_{FL}(\omega) & T, \omega \ll E_{coh} & (\text{with } t \to E_{coh}) \\ G_{\text{SYK}}(\omega) & T \gg E_{coh} \end{cases}
$$

$$
\Theta = \frac{1}{Te} \frac{\int_{-\infty}^{\infty} d\omega \omega f'(\omega) \ln G(\omega)}{\int_{-\infty}^{\infty} d\omega f'(\omega) \ln G(\omega)} \qquad \Theta_{FL} \sim \frac{T}{e} \qquad \begin{matrix} e^{\Theta} & 0.25 \\ 0.25 \\ 0.15 \\ 0.15 \\ 0.05 \\ 0.05 \end{matrix}
$$

⁴Kruchkov et al., *Physical Review B*,. 2020.

- Transport quantities given by isolated Green's function of quantum dot⁴
- Average Green's function has *exact* large-*N* solution

$$
G(\omega) \sim \begin{cases} G_{FL}(\omega) & T, \omega \ll E_{coh} & (\text{with } t \to E_{coh}) \\ G_{SVK}(\omega) & T \gg E_{coh} \end{cases}
$$

Try same philosophy for transport fluctuations: non-interacting fluctuations for $T \ll E_{coh}$, SYK fluctuations for $T \gg E_{coh}$

⁴Kruchkov et al., *Physical Review B*,. 2020.

Conductance fluctuations of a *closed* non-interacting quantum dot

Conductance fluctuations of a *closed* non-interacting quantum dot Key quantity to calculate: $\overline{\langle \text{Im } G_{ii}(\omega) \rangle \langle \text{Im } G_{ii}(\epsilon) \rangle}$

Conductance fluctuations of a *closed* non-interacting quantum dot Key quantity to calculate: $\overline{\langle \text{Im } G_{ii}(\omega) \rangle \langle \text{Im } G_{ii}(\epsilon) \rangle}$

Conductance fluctuations of a *closed* non-interacting quantum dot Key quantity to calculate: $\overline{\langle \text{Im } G_{ii}(\omega) \rangle \langle \text{Im } G_{ii}(\epsilon) \rangle}$

Pole at $|\omega - \epsilon|$, $T \rightarrow 0$, robust feature of FL

$$
\text{Var } \sigma \sim \text{Var } \Theta \sim \frac{1}{NT}
$$

Conductance fluctuations of a *closed* non-interacting quantum dot Key quantity to calculate: $\langle \text{Im } G_{ii}(\omega) \rangle \langle \text{Im } G_{ii}(\epsilon) \rangle$

"Universal" fluctuations of spectral density ∇ *ij* $\overline{\langle \text{Im } G_{ij}(\omega) \rangle \langle \text{Im } G_{ji}(\epsilon) \rangle} = \frac{2}{\sqrt{2}}$ *N*3 $\langle \overline{\text{Im }G(\omega)} \rangle \times \langle \overline{\text{Im }G(\epsilon)} \rangle$

"Universal" fluctuations of spectral density $\sum \overline{\langle \text{Im } G_{ij}(\omega) \rangle \langle \text{Im } G_{ji}(\epsilon) \rangle} = \frac{2}{\sqrt{2}}$ *ij N*3 $\langle \overline{\text{Im }G(\omega)} \rangle \times \langle \overline{\text{Im }G(\epsilon)} \rangle$ $\sigma = \frac{4e^2\Gamma}{L}$ ℏ \int^{∞} $\int_{-\infty}^{\infty} d\omega f'(\omega)$ Im G(ω) → Var $\sigma = \frac{2}{N}$ *N*3 σ^2

"Universal" fluctuations of spectral density $\sum \overline{\langle \text{Im } G_{ij}(\omega) \rangle \langle \text{Im } G_{ji}(\epsilon) \rangle} = \frac{2}{\sqrt{2}}$ *ij N*3 $\langle \overline{\text{Im }G(\omega)} \rangle \times \langle \overline{\text{Im }G(\epsilon)} \rangle$ $\Theta =$ β *e* $\int_{-\infty}^{\infty} d\omega \, \omega f'(\omega)$ Im $G(\omega)$ $\int_{-\infty}^{\infty} d\omega f'(\omega) \ln G(\omega)$ \Rightarrow Var $\Theta = \mathcal{O}(N^{-4})$

• How does a non-Fermi liquid "see" other forms of disorder?

- How does a non-Fermi liquid "see" other forms of disorder?
- SYK physics do not universally suppress **other** disorder sources

- How does a non-Fermi liquid "see" other forms of disorder?
- SYK physics do not universally suppress **other** disorder sources

- How does a non-Fermi liquid "see" other forms of disorder?
- SYK physics do not universally suppress **other** disorder sources

- How does a non-Fermi liquid "see" other forms of disorder?
- SYK physics do not universally suppress **other** disorder sources

Diagrams still diverge at low ω , *T*, although related to diverging DOS

$$
\left[\n \operatorname{Var} \sigma \sim \frac{\mathcal{E}^2}{NT^2} \quad \text{Var} \Theta \sim \frac{1}{NT}\n \right]
$$

- How does a non-Fermi liquid "see" other forms of disorder?
- SYK physics do not universally suppress **other** disorder sources

Diagrams still diverge at low ω , *T*, although related to diverging DOS

$$
\left(\text{Var } \sigma \sim \frac{\mathcal{E}^2}{NT^2} \text{ Var } \Theta \sim \frac{1}{NT}\right)
$$

• Statistical fluctuations in realistic SYK models - a subtle problem!

- Statistical fluctuations in realistic SYK models a subtle problem!
- Strongly-interacting non-Fermi liquid can still "sense" single-particle disorder

- Statistical fluctuations in realistic SYK models a subtle problem!
- Strongly-interacting non-Fermi liquid can still "sense" single-particle disorder
- Non-universal suppression above E_{coh} driven by SYK physics

Connection to experiments: what are we measuring?

Actual experiments measure fluctuations from changing μ, *B*, etc

Actual experiments measure fluctuations from changing μ, *B*, etc Non-interacting system: $\mu \rightarrow \mu + \delta \mu$ "re-draws" random matrix

Actual experiments measure fluctuations from changing μ, *B*, etc

Non-interacting system: $\mu \rightarrow \mu + \delta \mu$ "re-draws" random matrix

Graphene SYK setup - what all gets

Actual experiments measure fluctuations from changing μ, *B*, etc

Non-interacting system: $\mu \rightarrow \mu + \delta \mu$ "re-draws" random matrix

Graphene SYK setup - what all gets

Full re-drawing is "worst case"

Future directions: Treatment for open quantum dot ⁵

Can, Nica, and Franz, *Physical Review B*,. 2019

Future directions: Treatment for open quantum dot ⁵

Can, Nica, and Franz, *Physical Review B*,. 2019

Future directions: Treatment for open quantum dot ⁵

Can, Nica, and Franz, *Physical Review B*,. 2019

Future directions: Observable signatures of *many-body* **quantum chaos**⁶

Cotler et al., *Journal of High Energy Physics*, 2017.

Future directions: Observable signatures of *many-body* **quantum chaos**⁶

Cotler et al., *Journal of High Energy Physics*, 2017.

Future directions: Observable signatures of *many-body* **quantum chaos**⁶

Can we find signatures of quantum chaos in single-particle observables?

⁶Cotler et al., *Journal of High Energy Physics*, 2017.

Thank you for your attention!

