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SYK as a minimal model for holographic physics

H =
1

(2N)
3
2

∑

ijkl
Jij;klc†i c

†
j ckcl 〈Jij;kl〉 = 0 〈J∗ij;klJij;kl〉 = J2

• No quasiparticle excitations
• Extensive entropy as T → 0
• Connections to holography
• Analytically tractable

Experimental challenges: suppress kinetic
energy, generate disordered interactions
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SYK as a minimal model for holographic physics

H =
1

(2N)
3
2

∑

ijkl
Jij;klc†i c

†
j ckcl 〈Jij;kl〉 = 0 〈J∗ij;klJij;kl〉 = J2

Can we use sample-to-sample fluctua-
tions as a diagnostic of strongly correlated
physics?
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Transport fluctuations as a probe of non-Fermi liquid physics

Fermi liquid
• Universal conductance fluctuations
from single-particle chaos1

• Sharp single-particle peaks

SYK model
• Exponential DOS at low energy

• Strongly self-averaging

1Lee and Stone, Physical Review Letters, 1985; Washburn and Webb, Advances in Physics, 1986
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Proposed realizations in disordered graphene flakes3

Exp: Laurel Anderson (W06.003)2

2Anderson et al., arXiv:2401.08050, 2024
3Chen et al., Physical Review Letters, 2018.
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Non-Fermi liquid physics probed through transport quantities

Competing energy scales:
• SYK interaction J
• Random hopping t
• Charging energy Ec
• Coupling to leads Γ
• Schwarzian corrections J/N

This talk: consider competition between Fermi liquid (t) and SYK physics (J)

H =
1

(2N)3/2
∑

ijkl
Jij;klc†i c

†
j ckcl +

1
N1/2
∑

ij
tijc†i cj + μ
∑

i
c†i ci

〈Jij;kl〉 = 〈tij〉 〈J∗ij;klJij;kl〉 = J2 〈t∗ij tij〉 = t2
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Transport quantities: disordered Fermi liquid below Ecoh ∼ t2/ J, SYK above

• Transport quantities given by isolated Green’s function of quantum dot4

• Average Green’s function has exact large-N solution

G(ω) ∼

(

GFL(ω) T, ω� Ecoh (with t→ Ecoh)
GSYK(ω) T � Ecoh

4Kruchkov et al., Physical Review B,. 2020.
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Transport quantities: disordered Fermi liquid below Ecoh ∼ t2/ J, SYK above

• Transport quantities given by isolated Green’s function of quantum dot4

• Average Green’s function has exact large-N solution

G(ω) ∼

(

GFL(ω) T, ω� Ecoh (with t→ Ecoh)
GSYK(ω) T � Ecoh

Try same philosophy for transport fluctuations: non-interacting fluctua-
tions for T � Ecoh, SYK fluctuations for T � Ecoh

4Kruchkov et al., Physical Review B,. 2020.
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Non-interacting Fermi liquid prediction: random matrix theory

Conductance fluctuations of a closed non-interacting quantum dot

Key quantity to calculate: 〈ImGij(ω)〉〈ImGji(ε)〉

Pole at |ω − ε| , T → 0, robust feature of FL

Var σ ∼ Var Θ ∼
1
NT
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Pure SYK prediction: strongly self-averaging

“Universal” fluctuations of spectral density
∑

ij
〈ImGij(ω)〉〈ImGji(ε)〉 =

2
N3
〈ImG(ω)〉 × 〈ImG(ε)〉
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Pure SYK prediction: strongly self-averaging

“Universal” fluctuations of spectral density
∑
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Random hoppings still drive fluctuations even in SYK regime!

• How does a non-Fermi liquid “see” other forms of disorder?

• SYK physics do not universally suppress other disorder sources

Diagrams still diverge at low ω , T,
although related to diverging DOS

Var σ ∼
E2

NT2
Var Θ ∼

1
NT
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Takeaway from previous results

• Statistical fluctuations in realistic SYK models - a subtle problem!
• Strongly-interacting non-Fermi liquid can still “sense” single-particle
disorder

• Non-universal suppression above Ecoh driven by SYK physics
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Connection to experiments: what are we measuring?

Actual experiments measure fluctuations from changing μ, B, etc

Non-interacting system: μ→ μ+ δμ

“re-draws” random matrix
Graphene SYK setup - what all gets

re-drawn?

Full re-drawing is “worst case”
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Future directions: Treatment for open quantum dot 5

5Can, Nica, and Franz, Physical Review B,. 2019
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Future directions: Observable signatures ofmany-body quantum chaos6

Can we find signatures of quantum
chaos in single-particle observables?

6Cotler et al., Journal of High Energy Physics, 2017.
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Thank you for your attention!


