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Long-standing mystery in cuprates - the nature of the pseudogap

View the pseudogap metal as a quantum

state, which could be stable at T = 0

under suitable conditions

Goal: construct a mean-field theory

that captures both FL and psuedo-

gap metals

Keimer et al. 2015.
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Paramagnon theory of the Hubbard model

H =
∑
p

εpc
†
pαcpα + U

∑
i

ni↑ni↓

Represent ℓ = 0 , 1 excitations as

antiferromagnetic spin pair, Φi =
1√
3
(S2i − S1i)

AFQMC connection: re-

formulate e−τH |ψ0⟩ as 2D

free fermions coupled to

(2+1)D classical fields.

“Re-quantizing” classical

fields gives e−τHsf |ψ0⟩⊗|a⟩
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Mean-field phase diagram of the pseudogap metal
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FL∗ phase qualitatively captures pseudogap features

Mean-field calculation reproduces

small hole pockets with weak back-

side spectral weight

Mascot et al. 2022; Nikolaenko et al. 2023; Christos et al. 2023.
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Paramagnon fractionalization admits trial wavefunctions

|ψ⟩ ≡
∏
i

(f1i↑f2i↓ − f1i↓f2i↑)︸ ︷︷ ︸
Rung singlet projection

|ψMF⟩

• How do these states fare

energetically?

• Can they reproduce (static)

correlation functions?
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Spin singlet projection implementation

ψ(R) ≡ (⟨R| ⊗ ⟨↑↓|) |ψMF⟩︸ ︷︷ ︸
Scales exponentially

=
∑
x

(⟨R| ⊗ ⟨x|)︸ ︷︷ ︸
Slater

|ψMF⟩

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

=

∑
R,x,x′ ψ∗(R, x′)ψ(R, x)E(R, x, x′)∑

R,x,x′ ψ
∗(R, x′)ψ(R, x)

p(R, x, x′)s(R, x, x′)
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Results at half filling, 4× 4 lattice
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Future directions

For pseudogap:

• Careful finite size analysis - average

over BCs, extrapolate to

thermodynamic limit, etc

• Non-zero doping - at U/t = 8,

energetic favourability vanishes

around p ≈ 0.25

• GA for simplifying wavefunctions?

General perspectives:

• Using “quantum” auxiliary fields for

trial variational wavefunctions - how

optimizable is a more general

projection?


