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Outline of talk

• Geeral discussion of quantum antiferromagnets and sign problems

• Derivation of effective model - bosonic spinons coupled to odd Z2 gauge field

• Sign-problem-free mapping - generalized particle/vortex dualities
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Frustrated antiferromagnetism leads to exotic quantum phases

H =
∑

ij JijSi · Sj , trivial phase for half-integer spin precluded by LSM theorem

Numerics generally restricted to small

system sizes, resolution of ordered phases

difficult
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Sign problem generally restricts large-scale numerical simulations

“Wavefunction-based” numerics (MPS,

PEPS, ED. . . )

• Minimize energy of trial |ψ0⟩
• Generic ansatzes, can be tried on any

Hamiltonian

• Generally restricted to small system

sizes

• Certain ground states may fall outside

the range of applicability of an ansatz

“Partition function-based” numerics

(PIMC, DQMC, SSE. . . )

• Direct evaluation of tr
[
e−βH

]
• Stochastic methods allow for much

larger system sizes

• “Sign problem” prevents generic

applicability

• Can cure sign problem through clever

mappings, designer Hamiltonians, etc
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Bosonic spinon description captures orderd phases

Rewrite spin model using S = 1
2s

†
iασ

α
β s

β
i , where α = 1 . . .M and s†iαs

α
i = ns allows for

a large ns , M study.

L =
∑
i

[
s†iα

(
∂

∂τ
+ iλi

)
sαi − iλins

]
−
∑
ij

Jij
2M

(
ϵαβs†iαs

†
jβ

)(
ϵγδs

γ
i s

δ
j

)
Find saddle-point solutions for

Qij ≡ ⟨ϵαβsαi s
β
j ⟩, λi

Sachdev 1992.
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Mean-field spinon solution supports gapped vison excitations

Spinon condensation → magnetic order

Sachdev 1992; Huh, Punk, and Sachdev 2011.
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Mean-field spinon solution supports gapped vison excitations

Vison condensation → VBS order

Sachdev 1992; Huh, Punk, and Sachdev 2011.
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Effective model of triangular lattice antiferromagnetism

Z =
∑

sj,j+µ̂=±1

∏
j ,α

ˆ
dz jα δ

∑
α=1,2

∣∣z2jα∣∣− 1


×

∏
j

sj ,j+τ

 exp (−H[zα, s])

H[zα, s] = −J

2

∑
⟨j ,µ⟩

sj ,j+µ̂

(
z∗j ,αzj+µ̂,α + c.c

)
− K

∑
△□

∏
△□

sj ,j+µ̂ .

Jian et al. 2018.
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Mapping of a classical O(2) model, particle-vortex duality

Z =
∏
i

ˆ 2π

0

dθi
2π

exp [−H] , H = −J

π

∑
⟨ij⟩

cos(θi − θj) = −J

π

∑
iµ

cos (∆µθi )

Using the Villain representation,

e−J(1−cos(θ))/π ≈
∞∑

n=−∞
e−J(θ−2πn)2/(2π) ,

and
∞∑

n=−∞
e−J(θ−2πn)2/(2π) =

1√
2J

∞∑
p=−∞

e iπp
2/(2J)−ipθ ,

we get

Z =
∑
piµ

∏
i

ˆ 2π

0

dθi
2π

e−H , H =
π

2J

∑
i ,µ

p2iµ + ipiµ∆µθi
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Mapping of a classical O(2) model, particle-vortex duality

Integrating out θi enforces ∆µpiµ = 0.

piµ must form closed current loops.

Can be enforced by taking piµ = ϵµνλ∆νhiλ

h
jµ

= 1

h
jµ

= 1

h
jµ

= 1
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Classical O(2) model with coupling to Z2 gauge field

Z =
∑

sij=±1

∏
i

ˆ 2π

0

dθi
2π

exp [−H] , H = −J

π

∑
iµ

si ,i+µ cos (∆µθi ) + K
∑
□

∏
□

sij

Carefully following sij through Villain representation gives mutual Chern-Simons

coupling between hi ,µ and sij ,

iπϵµνλ∆νhi ,λ
1− si ,i+µ

2
= iπhi ,µ

1−
∏

□ si ,i+µ

2
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Classical O(2) model with coupling to Z2 gauge field

Claim: integration over sij can be accomplished by independently summing over

possible plaquette values
∏

□ sij ≡ Φiµ = ±1.

This is not true generally! Fluxes are not independent - product of Φiµ over any closed

surface must be 1. Alternatively, ∆µΦiµ = 0 mod 4.

This constraint

is enforced dynamically by the redundant degrees

of freedom present in the height field representation

hiµ → hiµ +∆µfi

exp

[
iπ∆µfi

1− Φiµ

2

]
= exp

[
−i
π

2
fi∆µΦiµ

]
Because of this, we are allowed to independently integrate over Φiµ = ±1.
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Classical O(2) model with coupling to Z2 gauge field

Z =
∞∑

h=−∞
exp [−H]

H =
π

2J

∑
i ,µ

(
ϵµνλ∆νhi ,λ

)2
+ Kd

∑
i ,µ

σi ,i+µ

σi ,i+µ ≡
(
2hi ,µ − 1

)
mod 2

tanhKd ≡ e−2K

J → 0 limit recovers 3D Ising model - dual to even Z2 gauge theory.
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Accomodation of Berry phase

Berry phase introduces an extra phase factor, H → H − iπ
∑

j
1−sj,j+τ

2 .

Can be absorbed by a shift of h because of CS coupling

H =
π

2J

∑
i ,µ

(
ϵµνλ∆νhi ,λ

)2
+ iπϵµνλ∆ν h̃i ,λ

1− si ,i+µ

2
+ K

∑
□

∏
□

sij

h̃ ≡ h + h0 , ϵµνλ∆νh
0
iλ

= δµτ

Ising term is now Kd
∑

i ,µ εi ,i+µσi ,i+µ,

where
∏

□ εi ,i+µ = −1 for spatial plaquettes

Park and Sachdev 2002.
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Elevation to O(4) model

Two complex DOFs, ziα ≡ riαe
iθα , constraint

∑
α r

2
iα = 1

Hopping z∗i ,αzi+µ,α + c.c → ri ,αrj ,α cos(∆µθi ,α)

Performing Villain approximation on each θα breaks O(4) symmetry to O(2)⊗ O(2),

must use exact identity

eJ cos θ ∝
∞∑

p=−∞
e ipθIp(J) ln Ip(J ≫ 1) ≈ 2

J
p2

Z =
∞∑

hj,α,µ=−∞

∏
jα

ˆ 1

0
rj ,α drj ,α δ

(∑
α

r2j ,α − 1

)
exp (−H[rα , hα])

H[rα , hα] =
∑
⟨j ,µ⟩

[
− ln Ipj,α,µ(Jrj ,αrj+µ̂,α) + Kdεj ,µσj ,µ

]
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Generalizations of mapping to other models

Bose-Hubbard model in 2 + 1D coupled to

Z2 gauge field - what happens at

non-integer filling?

H = J
∑
iλ

si ,i+λ cos (∆λθi + iµδλτ ) + K
∑
□

∏
□

sij

⇒ 1

2J

∑
iλ

(piλ − n0δλτ )
2 + Kd

∑
i ,µ

σi ,i+µ

Fluctuations of non-contractible loops

crucial - cluster/worm updates may be

necessary for large system sizes

Homeier et al. 2022.
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Future directions

• Large-N expansion for O(2N) DQCP - matchup between numerics and theory?

• More sophisticated simulations - continuous time, cluster updates for DQCP, etc

• Generalization of mapping to non-Abelian gauge groups?
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