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Outline of talk

e Geeral discussion of quantum antiferromagnets and sign problems
e Derivation of effective model - bosonic spinons coupled to odd Z, gauge field

e Sign-problem-free mapping - generalized particle/vortex dualities



Frustrated antiferromagnetism leads to exotic quantum phases

H= Zij JijSi - Sj, trivial phase for half-integer spin precluded by LSM theorem
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Sign problem generally restricts large-scale numerical simulations

“Wavefunction-based” numerics (MPS,
PEPS, ED...)
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Sign problem generally restricts large-scale numerical simulations

“Wavefunction-based” numerics (MPS, “Partition function-based” numerics
PEPS, ED...) (PIMC, DQMC, SSE. . )
e Minimize energy of trial [) e Direct evaluation of tr [e=#/]
e Generic ansatzes, can be tried on any e Stochastic methods allow for much
Hamiltonian larger system sizes
e Generally restricted to small system e "Sign problem” prevents generic
sizes applicability
e Certain ground states may fall outside e Can cure sign problem through clever
the range of applicability of an ansatz mappings, designer Hamiltonians, etc



Bosonic spinon description captures orderd phases
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Mean-field spinon solution supports gapped vison excitations
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Spinon condensation — magnetic order

Sachdev 1992: Huh, Punk, and Sachdev 2011.



Mean-field spinon solution supports gapped vison excitations

Vison condensation — VBS order

Sachdev 1992: Huh, Punk, and Sachdev 2011.



Effective model of triangular lattice antiferromagnetism
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Effective model of triangular lattice antiferromagnetism
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Effective model of triangular lattice antiferromagnetism
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Mapping of a classical O(2) model, particle-vortex duality
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Mapping of a classical O(2) model, particle-vortex duality
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Mapping of a classical O(2) model, particle-vortex duality
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Classical O(2) model with coupling to Z, gauge field
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Classical O(2) model with coupling to Z, gauge field

Claim: integration over s;; can be accomplished by independently summing over
possible plaquette values HD sij = <I>7li = +1.
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Classical O(2) model with coupling to Z, gauge field

Claim: integration over s;; can be accomplished by independently summing over
possible plaquette values [ s;j = <I>7li = =il
This is not true generally! Fluxes are not independent - product of ¢7u over any closed

surface must be 1. Alternatively, Au(bm =0 mod 4.

This constraint
is enforced dynamically by the redundant degrees
of freedom present in the height field representation
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Classical O(2) model with coupling to Z, gauge field

Claim: integration over s;; can be accomplished by independently summing over
possible plaquette values [ s;j = <I>7li = =il
This is not true generally! Fluxes are not independent - product of ¢7u over any closed

surface must be 1. Alternatively, Au(bm =0 mod 4.

This constraint
is enforced dynamically by the redundant degrees
of freedom present in the height field representation
um
1—&;
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Because of this, we are allowed to independently integrate over (D?u =+1.
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Classical O(2) model with coupling to Z, gauge field
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J — 0 limit recovers 3D Ising model - dual to even Z, gauge theory.
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Accomodation of Berry phase
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Berry phase introduces an extra phase factor, H - H — iw Zj %

Park and Sachdev 2002.
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Accomodation of Berry phase

Berry phase introduces an extra phase factor, H - H — iw Zj 175’%
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Can be absorbed by a shift of h because of CS coupling

T 2 ~ 1—s5;4
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Elevation to O(4) model

Two complex DOFs, zj, = riqe'®, constraint > r? =1

Hopping z,zi4y,a + €. = riafja cos(Aubiq)
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Two complex DOFs, zj, = rige'?, constraint > 2 =1
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Elevation to O(4) model

Two complex DOFs, zj, = riqe®, constraint >°_r? =1
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Generalizations of mapping to other models

Bose-Hubbard model in 2 4+ 1D coupled to
Z» gauge field - what happens at
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Fluctuations of non-contractible loops o confined ho deconfined |
0 pure gauge theory =
crucial - cluster/worm updates may be Il

necessary for large system sizes

Homeier et al. 2022.
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Future directions
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Future directions

e Large-N expansion for O(2N) DQCP - matchup between numerics and theory?
e More sophisticated simulations - continuous time, cluster updates for DQCP, etc

e Generalization of mapping to non-Abelian gauge groups?
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