A sign-problem-free effective model of triangular lattice antiferromagnetism

Henry Shackleton November 4, 2022

Harvard University

Outline of talk

- Geeral discussion of quantum antiferromagnets and sign problems
- Derivation of effective model bosonic spinons coupled to odd \mathbb{Z}_2 gauge field
- Sign-problem-free mapping generalized particle/vortex dualities

 $H=\sum_{ij}J_{ij}{\bf S}_i\cdot{\bf S}_j$, trivial phase for half-integer spin precluded by LSM theorem

 $H=\sum_{ij}J_{ij}{\bf S}_i\cdot{\bf S}_j$, trivial phase for half-integer spin precluded by LSM theorem

 $H=\sum_{ij}J_{ij}{\bf S}_i\cdot{\bf S}_j$, trivial phase for half-integer spin precluded by LSM theorem

 $H=\sum_{ij}J_{ij}{\bf S}_i\cdot{\bf S}_j$, trivial phase for half-integer spin precluded by LSM theorem

Numerics generally restricted to small system sizes, resolution of ordered phases difficult

"Wavefunction-based" numerics (MPS, PEPS, ED. . .)

"Wavefunction-based" numerics (MPS, PEPS, ED. . .)

- Minimize energy of trial $|\psi_0\rangle$
- Generic ansatzes, can be tried on any Hamiltonian
- Generally restricted to small system sizes
- Certain ground states may fall outside the range of applicability of an ansatz

"Wavefunction-based" numerics (MPS, PEPS, $ED...$)

- Minimize energy of trial $|\psi_0\rangle$
- Generic ansatzes, can be tried on any Hamiltonian
- Generally restricted to small system sizes
- Certain ground states may fall outside the range of applicability of an ansatz

"Partition function-based" numerics (PIMC, DQMC, SSE. . .)

"Wavefunction-based" numerics (MPS, PEPS, ED. . .)

- Minimize energy of trial $|\psi_0\rangle$
- Generic ansatzes, can be tried on any Hamiltonian
- Generally restricted to small system sizes
- Certain ground states may fall outside the range of applicability of an ansatz

"Partition function-based" numerics (PIMC, DQMC, SSE. . .)

- Direct evaluation of tr $[e^{-\beta H}]$
- Stochastic methods allow for much larger system sizes
- "Sign problem" prevents generic applicability
- Can cure sign problem through clever mappings, designer Hamiltonians, etc

Bosonic spinon description captures orderd phases

Sachdev [1992.](#page-0-0)

Mean-field spinon solution supports gapped vison excitations

Spinon condensation \rightarrow magnetic order

Sachdev [1992;](#page-0-0) Huh, Punk, and Sachdev [2011.](#page-0-0)

Mean-field spinon solution supports gapped vison excitations

Vison condensation \rightarrow VBS order

Sachdev [1992;](#page-0-0) Huh, Punk, and Sachdev [2011.](#page-0-0)

Effective model of triangular lattice antiferromagnetism

$$
\mathcal{Z} = \sum_{\mathbf{s}_{j,j+\widehat{\mu}}=\pm 1} \prod_{j,\alpha} \int dz_{j\alpha} \delta\left(\sum_{\alpha=1,2} |z_{j\alpha}^2| - 1\right)
$$

$$
\times \left[\prod_j s_{j,j+\tau}\right] \exp\left(-H[z_\alpha, s]\right)
$$

$$
H[z_\alpha, s] = -\frac{J}{2} \sum_{\langle j,\mu \rangle} s_{j,j+\widehat{\mu}} (z_{j,\alpha}^* z_{j+\widehat{\mu},\alpha} + \text{c.c})
$$

$$
-K \sum_{\triangle \Box} \prod_{\Delta \square} s_{j,j+\widehat{\mu}}.
$$

Jian et al. [2018.](#page-0-0)

Effective model of triangular lattice antiferromagnetism

$$
\mathcal{Z} = \sum_{\substack{s_{j,j+\widehat{\mu}}=\pm 1 \ j,\alpha}} \prod_{j,\alpha} \int dz_{j\alpha} \delta\left(\sum_{\alpha=1,2} |z_{j\alpha}^2| - 1\right)
$$
\n
$$
\times \left[\prod_{j} s_{j,j+\tau}\right] \exp(-H[z_{\alpha}, s])
$$
\n
$$
H[z_{\alpha}, s] = -\frac{J}{2} \sum_{\langle j,\mu \rangle} s_{j,j+\widehat{\mu}} (z_{j,\alpha}^* z_{j+\widehat{\mu},\alpha} + c.c)
$$
\n
$$
-K \sum_{\Delta \Box} \prod_{\alpha=1} s_{j,j+\widehat{\mu}}.
$$
\n
$$
J
$$

Jian et al. [2018.](#page-0-0)

Effective model of triangular lattice antiferromagnetism

$$
\mathcal{Z} = \sum_{\substack{\mathbf{s}_{j,j+\widehat{\mu}}=\pm 1 \ j,\alpha}} \prod_{j,\alpha} \int dz_{j\alpha} \delta\left(\sum_{\alpha=1,2} |z_{j\alpha}^2| - 1\right)
$$

$$
\times \left[\prod_j \mathbf{s}_{j,j+\tau}\right] \exp\left(-H[z_{\alpha}, \mathbf{s}]\right)
$$

$$
H[z_{\alpha}, \mathbf{s}] = -\frac{J}{2} \sum_{\langle j,\mu \rangle} \mathbf{s}_{j,j+\widehat{\mu}} (z_{j,\alpha}^* z_{j+\widehat{\mu},\alpha} + \text{c.c})
$$

$$
-K \sum_{\triangle \Box} \prod_{\Delta \square} \mathbf{s}_{j,j+\widehat{\mu}}.
$$

Jian et al. [2018.](#page-0-0)

$$
\mathcal{Z} = \prod_i \int_0^{2\pi} \frac{\mathrm{d}\theta_i}{2\pi} \exp\left[-H\right] \quad , \quad H = -\frac{J}{\pi} \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) = -\frac{J}{\pi} \sum_{i\mu} \cos(\Delta_\mu \theta_i)
$$

$$
\mathcal{Z} = \prod_i \int_0^{2\pi} \frac{\mathrm{d}\theta_i}{2\pi} \exp\left[-H\right] \quad , \quad H = -\frac{J}{\pi} \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) = -\frac{J}{\pi} \sum_{i\mu} \cos(\Delta_\mu \theta_i)
$$

Using the Villain representation,

$$
e^{-J(1-\cos(\theta))/\pi} \approx \sum_{n=-\infty}^{\infty} e^{-J(\theta-2\pi n)^2/(2\pi)},
$$

$$
\mathcal{Z} = \prod_i \int_0^{2\pi} \frac{\mathrm{d}\theta_i}{2\pi} \exp\left[-H\right] \quad , \quad H = -\frac{J}{\pi} \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) = -\frac{J}{\pi} \sum_{i\mu} \cos\left(\Delta_\mu \theta_i\right)
$$

Using the Villain representation,

$$
e^{-J(1-\cos(\theta))/\pi}\approx \sum_{n=-\infty}^{\infty}e^{-J(\theta-2\pi n)^2/(2\pi)},
$$

and

$$
\sum_{n=-\infty}^{\infty} e^{-J(\theta-2\pi n)^2/(2\pi)} = \frac{1}{\sqrt{2J}} \sum_{p=-\infty}^{\infty} e^{i\pi p^2/(2J)-ip\theta},
$$

we get

$$
\mathcal{Z} = \sum_{p_{i\mu}} \prod_i \int_0^{2\pi} \frac{\mathrm{d}\theta_i}{2\pi} e^{-H} \quad , \quad H = \frac{\pi}{2J} \sum_{i,\mu} p_{i\mu}^2 + i p_{i\mu} \Delta_\mu \theta_i
$$

Integrating out θ_i enforces $\Delta_\mu p_{i\mu} = 0$. $p_{i\mu}$ must form closed current loops. Can be enforced by taking $p_{i\mu} = \epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\bar{i}\lambda}$

$$
\mathcal{Z} = \sum_{s_{ij}=\pm 1} \prod_i \int_0^{2\pi} \frac{\mathrm{d}\theta_i}{2\pi} \exp\left[-H\right] \quad , \quad H = -\frac{J}{\pi} \sum_{i\mu} s_{i,i+\mu} \cos\left(\Delta_\mu \theta_i\right) + K \sum_{\square} \prod_{\square} s_{ij}
$$

Carefully following s_{ij} through Villain representation gives mutual Chern-Simons coupling between $h_{\bar{i},\mu}$ and s_{ij} ,

$$
i\pi\epsilon_{\mu\nu\lambda}\Delta_{\nu}h_{\bar{i},\lambda}\frac{1-s_{i,i+\mu}}{2}=i\pi h_{\bar{i},\mu}\frac{1-\prod_{\square} s_{i,i+\mu}}{2}
$$

Claim: integration over s_{ii} can be accomplished by independently summing over possible plaquette values $\prod_{\square} s_{ij} \equiv \Phi_{\overline{i}\mu} = \pm 1.$

Claim: integration over s_{ii} can be accomplished by independently summing over possible plaquette values $\prod_{\square} s_{ij} \equiv \Phi_{\overline{i}\mu} = \pm 1.$ This is not true generally! Fluxes are not independent - product of $\Phi_{\bar{i}\mu}$ over any closed

surface must be 1. Alternatively, $\Delta_{\mu} \Phi_{\bar{j} \mu} = 0$ mod 4.

Claim: integration over s_{ii} can be accomplished by independently summing over possible plaquette values $\prod_{\square} s_{ij} \equiv \Phi_{\overline{i}\mu} = \pm 1.$ This is not true generally! Fluxes are not independent - product of $\Phi_{\bar{i}\mu}$ over any closed surface must be 1. Alternatively, $\Delta_{\mu} \Phi_{\bar{i} \mu} = 0$ mod 4.

This constraint

is enforced dynamically by the redundant degrees of freedom present in the height field representation

$$
\begin{aligned} h_{\overline{i}\mu} &\to h_{\overline{i}\mu} + \Delta_\mu f_{\overline{i}} \\ \exp\left[i\pi\Delta_\mu f_{\overline{i}}\frac{1-\Phi_{\overline{i}\mu}}{2}\right] = \exp\left[-i\frac{\pi}{2}f_{\overline{i}}\Delta_\mu\Phi_{\overline{i}\mu}\right] \end{aligned}
$$

Claim: integration over s_{ii} can be accomplished by independently summing over possible plaquette values $\prod_{\square} s_{ij} \equiv \Phi_{\overline{i}\mu} = \pm 1.$ This is not true generally! Fluxes are not independent - product of $\Phi_{\bar{i}\mu}$ over any closed surface must be 1. Alternatively, $\Delta_{\mu} \Phi_{\bar{j} \mu} = 0$ mod 4.

This constraint

is enforced dynamically by the redundant degrees of freedom present in the height field representation

$$
\begin{aligned} h_{\overline{i}\mu} &\to h_{\overline{i}\mu} + \Delta_\mu f_{\overline{i}} \\ \exp\left[i\pi\Delta_\mu f_{\overline{i}}\frac{1-\Phi_{\overline{i}\mu}}{2}\right] = \exp\left[-i\frac{\pi}{2}f_{\overline{i}}\Delta_\mu\Phi_{\overline{i}\mu}\right] \end{aligned}
$$

Because of this, we are allowed to independently integrate over $\Phi_{\bar{i}\mu} = \pm 1$.

$$
\mathcal{Z} = \sum_{h=-\infty}^{\infty} \exp[-H]
$$

\n
$$
H = \frac{\pi}{2J} \sum_{i,\mu} \left(\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\bar{i},\lambda} \right)^2 + K_d \sum_{i,\mu} \sigma_{i,i+\mu}
$$

\n
$$
\sigma_{\bar{i},\bar{j}+\mu} \equiv (2h_{\bar{i},\mu} - 1) \mod 2
$$

\ntanh $K_d \equiv e^{-2K}$

 $J \rightarrow 0$ limit recovers 3D Ising model - dual to even \mathbb{Z}_2 gauge theory.

Accomodation of Berry phase

Berry phase introduces an extra phase factor, $H\to H-i\pi\sum_f$ $1-s_{j,j+\tau}$ $\frac{2^{j,j+\tau}}{2}$.

Park and Sachdev [2002.](#page-0-0)

Accomodation of Berry phase

Berry phase introduces an extra phase factor, $H\to H-i\pi\sum_f$ $1-s_{j,j+\tau}$ $\frac{2^{j,j+\tau}}{2}$. Can be absorbed by a shift of h because of CS coupling

$$
H = \frac{\pi}{2J} \sum_{i,\mu} \left(\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\bar{i},\lambda} \right)^2 + i \pi \epsilon_{\mu\nu\lambda} \Delta_{\nu} \tilde{h}_{\bar{i},\lambda} \frac{1 - s_{i,i+\mu}}{2} + K \sum_{\square} \prod_{\square} s_{ij}
$$

$$
\tilde{h} \equiv h + h^0 \quad , \quad \epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\bar{i}\lambda}^0 = \delta_{\mu\tau}
$$

Accomodation of Berry phase

Berry phase introduces an extra phase factor, $H\to H-i\pi\sum_f$ $1-s_{j,j+\tau}$ $\frac{2^{j,j+\tau}}{2}$. Can be absorbed by a shift of h because of CS coupling

$$
H = \frac{\pi}{2J} \sum_{i,\mu} \left(\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i},\lambda} \right)^2 + i \pi \epsilon_{\mu\nu\lambda} \Delta_{\nu} \widetilde{h}_{\overline{i},\lambda} \frac{1 - s_{i,i+\mu}}{2} + K \sum_{\square} \prod_{\square} s_{ij}
$$

\n
$$
\widetilde{h} \equiv h + h^0 , \quad \epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5
$$

\nIsing term is now $K_d \sum_{i,\mu} \epsilon_{i,i+\mu} \sigma_{i,i+\mu}$,
\nwhere $\prod_{\square} \epsilon_{i,i+\mu} = -1$ for spatial plaquettes
\n K_d
\n 0.5
\n $\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5$
\n K_d
\n $\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5$
\n K_d
\n $\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5$
\n K_d
\n $\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5$
\n K_d
\n $\epsilon_{\mu\nu\lambda} \Delta_{\nu} h_{\overline{i}\lambda}^0 = \delta_{\mu\tau} 1.5$
\n $\epsilon_{$

13

Elevation to O(4) model

Two complex DOFs, $z_{i\alpha}\equiv r_{i\alpha}e^{i\theta_{\alpha}}$, constraint $\sum_{\alpha}r_{i\alpha}^2=1$

Hopping $z_{i,\alpha}^* z_{i+\mu,\alpha} + \text{c.c} \rightarrow r_{i,\alpha} r_{j,\alpha} \cos(\Delta_\mu \theta_{i,\alpha})$

Elevation to O(4) model

Two complex DOFs, $z_{i\alpha}\equiv r_{i\alpha}e^{i\theta_{\alpha}}$, constraint $\sum_{\alpha}r_{i\alpha}^2=1$

Hopping $z_{i,\alpha}^* z_{i+\mu,\alpha} + \text{c.c} \rightarrow r_{i,\alpha} r_{j,\alpha} \cos(\Delta_\mu \theta_{i,\alpha})$ Performing Villain approximation on each θ_{α} breaks O(4) symmetry to O(2) ⊗ O(2), must use exact identity

$$
e^{J\cos\theta} \propto \sum_{p=-\infty}^{\infty} e^{ip\theta} I_p(J) \quad \ln I_p(J \gg 1) \approx \frac{2}{J}p^2
$$

Elevation to O(4) model

Two complex DOFs, $z_{i\alpha}\equiv r_{i\alpha}e^{i\theta_{\alpha}}$, constraint $\sum_{\alpha}r_{i\alpha}^2=1$

Hopping $z_{i,\alpha}^* z_{i+\mu,\alpha} + \text{c.c} \rightarrow r_{i,\alpha} r_{j,\alpha} \cos(\Delta_\mu \theta_{i,\alpha})$ Performing Villain approximation on each θ_{α} breaks O(4) symmetry to O(2) \otimes O(2),

must use exact identity

$$
e^{J\cos\theta} \propto \sum_{p=-\infty}^{\infty} e^{ip\theta} I_p(J) \quad \ln I_p(J \gg 1) \approx \frac{2}{J} p^2
$$

$$
\mathcal{Z} = \sum_{h_{\tilde{J},\alpha,\mu}=-\infty}^{\infty} \prod_{j\alpha} \int_0^1 r_{j,\alpha} \, dr_{j,\alpha} \, \delta\left(\sum_{\alpha} r_{j,\alpha}^2 - 1\right) \exp\left(-H[r_{\alpha}, h_{\alpha}]\right)
$$

$$
H[r_{\alpha}, h_{\alpha}] = \sum_{\langle j,\mu\rangle} \left[-\ln I_{p_{j,\alpha,\mu}}(Jr_{j,\alpha}r_{j+\widehat{\mu},\alpha}) + K_d \varepsilon_{\tilde{j},\mu} \sigma_{\tilde{j},\mu}\right]
$$

Generalizations of mapping to other models

Bose-Hubbard model in $2 + 1D$ coupled to \mathbb{Z}_2 gauge field - what happens at non-integer filling?

$$
H = J \sum_{i\lambda} s_{i,i+\lambda} \cos(\Delta_{\lambda} \theta_i + i\mu \delta_{\lambda \tau}) + K \sum_{\square} \prod_{\square} s_{ij}
$$

$$
\Rightarrow \frac{1}{2J} \sum_{i\lambda} (p_{i\lambda} - n_0 \delta_{\lambda \tau})^2 + K_d \sum_{i,\mu} \sigma_{i,i+\mu}
$$

Fluctuations of non-contractible loops crucial - cluster/worm updates may be necessary for large system sizes

Homeier et al. [2022.](#page-0-0)

Future directions

• Large-N expansion for $O(2N)$ DQCP - matchup between numerics and theory?

Future directions

- Large-N expansion for $O(2N)$ DQCP matchup between numerics and theory?
- More sophisticated simulations continuous time, cluster updates for DQCP, etc

Future directions

- Large-N expansion for $O(2N)$ DQCP matchup between numerics and theory?
- More sophisticated simulations continuous time, cluster updates for DQCP, etc
- Generalization of mapping to non-Abelian gauge groups?