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Effective models for triangular lattice quantum antiferromagnets

w/ Subir Sachdev, arXiv:2311.01572
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Frustrated magnetism on non-bipartite lattices: a difficult problem

Bipartite lattices

Marshall sign rule allows for non-trivial

“designer Hamiltonians”

Sandvik, Phys. Rev. Lett. 98, 227202

Non-bipartite lattice

Primarily restricted to variational ansatzes

(DMRG, PEPS, NQS. . . ) or ED
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Duality transformation for bosons coupled to Z2 gauge fields

• Generalization of bosonic “world-lines”

- odd world-lines must contain

surfaces of gauge flux

• Berry phase contributes frustration in

the surface action

• AF order = current proliferation,

asymmetry in different current flavors
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Worm algorithms difficult with gauge fluctuations

“Surface worm algorithm” allows for growth of ligaments, but is insufficient for

avoiding diverging correlation time
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Monte Carlo simulations establish AF, VBS, and spin liquid phases
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• VBS order only commensurate with system

sizes multiples of 12

• Surprisingly technical simulation - geometrically

complex and no “obvious” bottleneck

• Wolff cluster update utilized on gauge DOFs in

addition to SWA
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SWA still identifies transition, although restricted to

small systems
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Applications to Heisenberg models

Low-energy spectrum of J1 − J2 model has high overlap with Dirac spin liquid and√
12×

√
12 VBS (Wietek, arXiv:2303.01585)

AF to VBS transition described by Dirac spin liquid (Jian, Phys. Rev. B 97, 195115)
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Outlook and future directions

• Bosons coupled to discrete gauge

fields remains a relatively unexplored

research direction, also relevant for

quantum simulators (Homeier et al.

Commun Phys 6, 127 (2023)

• PIMC formulation is rather

rudimentary, can this mapping be

applied to continuous time? SSE?



Conductance and thermopower
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Conductance and thermopower fluctuations in interacting quantum dots

w/ Laurel Anderson, Philip Kim, and Subir Sachdev, arXiv:2309.05741
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SYK as a minimal model for holographic physics
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c†i ci

⟨Jij ;kl⟩ = ⟨tij⟩ = 0 ⟨J∗ij ;klJij ;kl⟩ = J2 ⟨t∗ij tij⟩ = t2

Proposed realizations in disordered

graphene (Phys. Rev. Lett. 121, 036403)



11

SYK as a minimal model for holographic physics

H =
1

(2N)
3
2

∑
ijkl

Jij ;klc
†
i c

†
j ckcl +

1

N
1
2

∑
ij

tijc
†
i cj − µ

∑
i

c†i ci

⟨Jij ;kl⟩ = ⟨tij⟩ = 0 ⟨J∗ij ;klJij ;kl⟩ = J2 ⟨t∗ij tij⟩ = t2

Proposed realizations in disordered

graphene (Phys. Rev. Lett. 121, 036403)



11

SYK as a minimal model for holographic physics

H =
1

(2N)
3
2

∑
ijkl

Jij ;klc
†
i c

†
j ckcl +

1

N
1
2

∑
ij

tijc
†
i cj − µ

∑
i

c†i ci

⟨Jij ;kl⟩ = ⟨tij⟩ = 0 ⟨J∗ij ;klJij ;kl⟩ = J2 ⟨t∗ij tij⟩ = t2

Proposed realizations in disordered

graphene (Phys. Rev. Lett. 121, 036403)



12

Transport quantities: disordered Fermi liquid below Ecoh ∼ t2/J, SYK above

σ =
4e2Γ

ℏ

ˆ ∞

−∞
dω f ′(ω) ImG (ω)

Phys. Rev. B 101, 205148 (2020)

Θ =
β

e

´∞
−∞ dω ωf ′(ω) ImG (ω)´∞
−∞ dω f ′(ω) ImG (ω)

Can statistical fluctuations be used as a probe for strongly-correlated physics?
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Non-interacting Fermi liquid prediction

Key quantity to calculate: ⟨Gij(iω)⟩⟨Gji (iϵ)⟩

Var σ ∼ Var Θ ∼ 1

NT
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Pure SYK prediction

“Universal” fluctuations in conformal limit,
Var σ

σ2
=

2

N3

Var Θ = O
(
N−4

)
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Random hoppings still drive fluctuations even in SYK regime!

SYK interactions renormalize ladder

propagators, fluctuations still remain

O
(
N−1

)
for T ≫ Ecoh

T−1 to T−2 crossover signals SYK physics
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Outlook

• These results worked within an equilibrium setting - can we do better? Recover

UCF as T → 0?

• Fluctuations for SYK in Schwarzian-dominated regime may yield new results
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