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Deconfined criticality and a gapless

Z2 spin liquid on the square lattice

antiferromagnet
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Deconfined criticality on the square lattice antiferromagnet

H. Shackleton and S. Sachdev, Journal of High Energy Physics 2022 (7), 1-35

H. Shackleton, A. Thomson, S. Sachdev, Physical Review B 104 (4), 045110
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Multimethod studies on J1 − J2 model indicate spin liquid phase

H = J1
∑
⟨ij⟩

S⃗i · S⃗j + J2
∑
⟨⟨ij⟩⟩

S⃗i · S⃗j



4

Multimethod studies on J1 − J2 model indicate spin liquid phase

Assume VMC description of spin liq-

uid, gapless fermionic spinons with d-

wave pairing (Z2Azz13)

1Wang and Sandvik, Phys. Rev. Lett., 2018 2Ferrari and Becca, Phys. Rev. B,. 2020, 3Nomura and

Imada, Phys. Rev. X,. 2021 4Liu et al., Phys. Rev. X,. 2022
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π-flux as a “parent” phase of a Z2 spin liquid
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Multiple instabilities captured by proximity to Dirac spin liquid
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U(1) → Z2 transition has fixed spinon anisotropy

Pure QED3: fermion anisotropy irrelevant, emergent Lorentz symmetry 6

QED3 + critical Higgs: fixed point with non-zero anisotropy

γµkµ ± Φ(γykx + γxky )

Φc ≈ 0.458 +O
(
N−1
f

) ηNéel ∼ ηVBS, but monopole

splitting may be more relevant

6Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005
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UV/IR mixing in SU(2) → Z2 transition
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Summary and outlook

• Are log2 predictions accurate? Can we find a minimal model? With numerics?

• Similar ideas in engineering NFLs7, Thirring models8. . .

7Lake and Senthil, Phys. Rev. Lett., 2023.
8Gomes et al., Phys. Rev. D,. 1991.
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Sign-problem-free effective models

for triangular lattice quantum

antiferromagnets
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Effective models for triangular lattice quantum antiferromagnets

H. Shackleton and S. Sachdev, arXiv:2311.01572
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Frustrated magnetism on non-bipartite lattices: a difficult problem

Bipartite lattices

Marshall sign rule allows for non-trivial

“designer Hamiltonians” 9

Non-bipartite lattice

Primarily restricted to variational ansatzes

(DMRG, PEPS, NQS. . . ) or ED

Candidate AF/VBS DQCP 10 remains

unexplored numerically

Goal: construct an effective model

amenable to large-scale QMC simu-

lations

9Sandvik, Phys. Rev. Lett., 2007
10Jian et al., Phys. Rev. B,. 2018
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Effective models for triangular lattice quantum antiferromagnets
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Duality transformation for bosons coupled to Z2 gauge fields
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Worm algorithms difficult with gauge fluctuations

“Classical worm algorithm” effective without gauge fluctuations
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Worm algorithms difficult with gauge fluctuations

“Surface worm algorithm” works well but still has diverging AC
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Monte Carlo simulations establish AF, VBS, and spin liquid phases
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SWA still identifies transition, although restricted to

small systems
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Applications to Heisenberg models

Low-energy spectrum of J1 − J2 model has high overlap with Dirac spin liquid and√
12×

√
12 VBS11

11Wietek, Capponi, and Läuchli, arXiv e-prints, 2023.
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Outlook and future directions

• Bosons coupled to discrete gauge

fields remains a relatively unexplored

research direction, also relevant for

quantum simulators 12

• PIMC formulation is rather

rudimentary, can this mapping be

applied to continuous time? SSE?

12Homeier et al., Commun. Phys., 2023
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