Models of deconfined criticality on square and triangular lattice antiferromagnets

Henry Shackleton November 29, 2023

Harvard University

$$
H = \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j
$$

Magnetic order

Valence bond solid order

Quantum spin liquid

Square lattice: fermionic spinons for unifying numerically-observed Néel/spin liquid/VBS transitions

Triangular lattice: bosonic spinons for effective sign-problem-free model of triangular lattice DQCP

[Deconfined criticality and a gapless](#page-5-0) \mathbb{Z}_2 [spin liquid on the square lattice](#page-5-0) [antiferromagnet](#page-5-0)

Deconfined criticality on the square lattice antiferromagnet

H. Shackleton and S. Sachdev, Journal of High Energy Physics 2022 (7), 1-35 H. Shackleton, A. Thomson, S. Sachdev, Physical Review B 104 (4), 045110

Multimethod studies on $J_1 - J_2$ model indicate spin liquid phase

Multimethod studies on $J_1 - J_2$ model indicate spin liquid phase

 1 Wang and Sandvik, *Phys. Rev. Lett.*, 2018 2 Ferrari and Becca, *Phys. Rev. B*,. 2020, 3 Nomura and Imada, Phys. Rev. X,. 2021 ⁴ Liu et al., Phys. Rev. X,. 2022

Multimethod studies on $J_1 - J_2$ model indicate spin liquid phase

Assume VMC description of spin liquid, gapless fermionic spinons with dwave pairing (Z2Azz13)

 1 Wang and Sandvik, *Phys. Rev. Lett.*, 2018 2 Ferrari and Becca, *Phys. Rev. B*,. 2020, 3 Nomura and Imada, Phys. Rev. X,. 2021 ⁴ Liu et al., Phys. Rev. X,. 2022

π -flux as a "parent" phase of a \mathbb{Z}_2 spin liquid

 N_f =2 QCD₃, emergent SO(5) symmetry

π -flux as a "parent" phase of a \mathbb{Z}_2 spin liquid

π -flux as a "parent" phase of a \mathbb{Z}_2 spin liquid

Multiple instabilities captured by proximity to Dirac spin liquid

$U(1) \rightarrow \mathbb{Z}_2$ transition has fixed spinon anisotropy

Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005

$U(1) \rightarrow \mathbb{Z}_2$ transition has fixed spinon anisotropy

Pure QED_3 : fermion anisotropy irrelevant, emergent Lorentz symmetry 6

 6 Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005

Pure QED_3 : fermion anisotropy irrelevant, emergent Lorentz symmetry 6 QED_3 + critical Higgs: fixed point with non-zero anisotropy

 6 Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005

Pure QED₃: fermion anisotropy irrelevant, emergent Lorentz symmetry ⁶ QED_3 + critical Higgs: fixed point with non-zero anisotropy

 6 Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005

Pure QED₃: fermion anisotropy irrelevant, emergent Lorentz symmetry ⁶ QED_3 + critical Higgs: fixed point with non-zero anisotropy

 6 Hermele, Senthil, and Fisher, Phys. Rev. B,. 2005

$$
\mathcal{L} = \mathcal{L}_{N_f=2\text{ QCD}_3} + \lambda \left(\Phi_1^a \bar{\psi} \gamma^x \mu^2 \sigma^a \psi + \Phi_2^a \bar{\psi} \gamma^y \mu^x \sigma^a \psi \right)
$$
\n
$$
\text{Value} \qquad \qquad \text{Gauge}
$$

$$
\mathcal{L} = \mathcal{L}_{N_f=2 \text{ QCD}_3} + \lambda \left(\Phi_1^a \overline{\psi} \gamma^\times \mu^z \sigma^a \psi + \Phi_2^a \overline{\psi} \gamma^\times \mu^\times \sigma^a \psi \right)
$$

Conserved "currents"

$$
\mathcal{L} = \mathcal{L}_{N_f=2 \text{ QCD}_3} + \lambda \left(\Phi_1^a \overline{\psi} \gamma^\times \mu^z \sigma^a \psi + \Phi_2^a \overline{\psi} \gamma^\times \mu^\times \sigma^a \psi \right)
$$

Conserved "currents"

Emergent "Higgs Bose liquid," extensive gapless modes regulated by (irrelevant) $\Phi \partial^2 \Phi$ term

$$
\mathcal{L} = \mathcal{L}_{N_f=2 \text{ QCD}_3} + \lambda \left(\Phi_1^a \overline{\psi} \gamma^\times \mu^z \sigma^a \psi + \Phi_2^a \overline{\psi} \gamma^\times \mu^\times \sigma^a \psi \right)
$$

Conserved "currents"

Emergent "Higgs Bose liquid," extensive gapless modes regulated by (irrelevant) $\Phi \partial^2 \Phi$ term

$$
G_{\text{N\'eel}}(r) \sim \exp\left[-\eta_{\text{N\'eel}}\ln^2(r/a)\right]
$$

$$
G_{\text{VBS}}(r) \sim \exp\left[-\eta_{\text{VBS}}\ln^2(r/a)\right]
$$

$$
\eta_{\text{N\'eel}} > \eta_{\text{VBS}}
$$

Summary and outlook

 7 Lake and Senthil, Phys. Rev. Lett., 2023. ⁸Gomes et al., Phys. Rev. D,. 1991.

Summary and outlook

 \bullet Are log² predictions accurate? Can we find a minimal model? With numerics?

 7 Lake and Senthil, Phys. Rev. Lett., 2023.

⁸Gomes et al., Phys. Rev. D,. 1991.

Summary and outlook

- \bullet Are log² predictions accurate? Can we find a minimal model? With numerics?
- \bullet Similar ideas in engineering NFLs⁷, Thirring models⁸...

 7 Lake and Senthil, Phys. Rev. Lett., 2023. 8 Gomes et al., *Phys. Rev. D*,. 1991.

[Sign-problem-free effective models](#page-26-0) [for triangular lattice quantum](#page-26-0) [antiferromagnets](#page-26-0)

H. Shackleton and S. Sachdev, arXiv:2311.01572

Bipartite lattices

Marshall sign rule allows for non-trivial "designer Hamiltonians" ⁹ $-$ ⁿn_n 0.34 $\sum_{i=1}^{n} \sum_{j=1}^{n} 0.32$ (a) \circ ∞ 0.25 $L=12$
 $L=16,20,24$ 1.50 $\frac{1}{\sqrt{3}}$ 1.45 $L = 32$ (b) $(g-g)L$

⁹Sandvik, *Phys. Rev. Lett.*, 2007 10 Jian et al., Phys. Rev. B,. 2018

Bipartite lattices

Marshall sign rule allows for non-trivial "designer Hamiltonians" ⁹

⁹Sandvik, *Phys. Rev. Lett.*, 2007 10 Jian et al., Phys. Rev. B,. 2018

Non-bipartite lattice

Primarily restricted to variational ansatzes (DMRG, PEPS, NQS. . .) or ED

Bipartite lattices

Marshall sign rule allows for non-trivial "designer Hamiltonians" ⁹

Non-bipartite lattice

Primarily restricted to variational ansatzes (DMRG, PEPS, NQS. . .) or ED Candidate AF/VBS DQCP ¹⁰ remains unexplored numerically

⁹Sandvik, *Phys. Rev. Lett.*, 2007 10 Jian et al., Phys. Rev. B,. 2018

Bipartite lattices

Marshall sign rule allows for non-trivial "designer Hamiltonians" ⁹

Non-bipartite lattice

Primarily restricted to variational ansatzes (DMRG, PEPS, NQS. . .) or ED Candidate AF/VBS DQCP ¹⁰ remains unexplored numerically

Goal: construct an effective model amenable to large-scale QMC simulations

⁹Sandvik, *Phys. Rev. Lett.*, 2007 10 Jian et al., Phys. Rev. B,. 2018

Worm algorithms difficult with gauge fluctuations

Worm algorithms difficult with gauge fluctuations

Magnetic order Current loop proliferation. generically asymmetric

VBS order Trans. symmetry breaking of flux configurations

SWA still identifies transition, although restricted to small systems

Applications to Heisenberg models

Low-energy spectrum of $J_1 - J_2$ model has high overlap with Dirac spin liquid and √ $12 \times$ $\sqrt{12}$ VBS¹¹

 11 Wietek, Capponi, and Läuchli, arXiv e-prints, 2023.

Outlook and future directions

- Bosons coupled to discrete gauge fields remains a relatively unexplored research direction, also relevant for quantum simulators ¹²
- PIMC formulation is rather rudimentary, can this mapping be applied to continuous time? SSE?

¹² Homeier et al., Commun. Phys., 2023